Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 76 Papers

Root growth promotion by Penicillium melinii: mechanistic insights and agricultural applications

Authors: Gutierrez-Manso, L., Devesa-Aranguren, I., Conesa, C. M., Monteoliva-Garcia, G., Gonzalez-Sayer, S., Lozano-Enguita, A., Blasio, F., Ugena, L., Nolasco, J., Vazquez-Mora, A., Levy, C. C. B., Ariel Otero, E., Fernandez-Calvo, P., Moreno-Risueno, M. A., petrik, I., Pencik, A., Reguera, M., Gonzalez-Bodi, S., Huerta-Cepas, J., Sacristan, S., del Pozo, J. C., Cabrera, J.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.05.692050

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the endophytic fungus Penicillium melinii, isolated from Arabidopsis thaliana roots, as a plant‑growth‑promoting agent that enhances root architecture and biomass across Arabidopsis, quinoa, and tomato. Integrated phenotypic, transcriptomic, and hormonal analyses reveal that the fungus stimulates auxin‑related pathways and modest stress responses, leading to increased tomato yield in field trials, underscoring its value as a model for root development and a sustainable biostimulant.

Penicillium melinii plant growth‑promoting fungus root architecture auxin signaling biostimulant

DNA methylation mediates transcriptional stability and transposon-driven trans-regulation under drought in wheat

Authors: Reynolds, I. J., Barratt, L. J., Harper, A. L.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.04.692301

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.

drought stress DNA methylation Triticum aestivum ROS1a demethylase transposable elements

Salt stress disrupts local auxin and COP1 gradients in Arabidopsis apical hooks

Authors: van Veen, E., Kupers, J. J., Chen, X., Tang, Y. H., De Zeeuw, T., Duijts, K., Hayes, S., Testerink, C., Gommers, C. M. M.

Date: 2025-12-05 · Version: 1
DOI: 10.64898/2025.12.03.691840

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that salinity stress induces a photomorphogenic‑like response in dark‑grown Arabidopsis thaliana seedlings, resulting in reduced apical hook curvature and impaired soil emergence. This phenotype is linked to disrupted asymmetric epidermal cell elongation, decreased auxin signaling and PIN3 abundance on the hook’s concave side, repression of BBX28 expression, and loss of a spatial COP1 gradient, highlighting spatial regulation as a key factor in stress‑affected seedling development.

apical hook salinity stress COP1 spatial gradient auxin signaling BBX28 repression

SPOROCYTELESS/NOZZLE acts together with MADS-domain transcription factors to regulate an auxin-dependent network controlling the Megaspore Mother Cell development

Authors: Cavalleri, A., Astori, C., Manrique, S., Bruzzaniti, G., Smaczniak, C., Mizzotti, C., Ruiu, A., Spano, M., Movilli, A., Gregis, V., Xu, X., Kaufmann, K., Colombo, L.

Date: 2025-11-26 · Version: 2
DOI: 10.1101/2025.03.11.641985

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study elucidates the SPL/NZZ‑dependent regulatory pathway governing megaspore mother cell (MMC) differentiation, revealing that SPL/NZZ directly targets genes and interacts with ovule‑identity MADS‑domain transcription factor complexes. Integration of multi‑omics data with genetic complementation and mutant analyses uncovers an auxin‑dependent downstream network that drives MMC formation.

megaspore mother cell SPL/NZZ MADS‑domain transcription factors auxin signaling regulatory network

DNA Methylation Dynamics Reveal Unique Plant Responses and Transcriptional Reprogramming to Combined Heat and Phosphate Deficiency Stress

Authors: Lozano-Enguita, A., Victoria Baca-Gonzalez, V., Morillas-Montaez, A., Pascual, J., Valledor, L., del Pozo, J. C., Caro, E.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.19.689328

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined DNA methylation dynamics in Arabidopsis thaliana shoots and roots under heat, phosphate deficiency, and combined stress using whole-genome bisulfite sequencing, small RNA‑seq, and RNA‑seq. Distinct stress‑specific methylation patterns were identified, with heat and combined stress causing CHH hypomethylation, phosphate deficiency causing hyper‑ and hypomethylation in shoots and roots respectively, and the combined stress exhibiting a unique signature independent of additive effects. Methylation changes were concentrated in transposable elements and regulatory regions, implicating RdDM and CMT2 pathways and suggesting a role in chromatin accessibility rather than direct transcriptional control.

DNA methylation heat stress phosphate deficiency Arabidopsis thaliana whole-genome bisulfite sequencing

MpNPR modulates lineage-specific oil body development and defence against gastropod herbivory in Marchantia polymorpha

Authors: Espinosa-Cores, L., Michavila, S., Gonzalez-Zuloaga, M., Solano, R., Gimenez-Ibanez, S.

Date: 2025-11-17 · Version: 1
DOI: 10.1101/2025.11.17.688000

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study characterizes the liverwort-specific NPR protein (MpNPR) in Marchantia polymorpha, demonstrating that it controls oil body formation and confers resistance to gastropod herbivory through interaction with the transcription factor MpERF13. Loss- or gain-of-function of MpNPR disrupts MpERF13‑dependent gene expression and compromises defense against snail feeding, revealing a lineage‑specific immune pathway distinct from tracheophyte NPR functions.

Marchantia polymorpha NPR signaling oil body formation MpERF13 gastropod herbivory

Antagonism between blue and red light-signalling controls thallus flatness in Marchantia polymorpha

Authors: Roetzer, J., Asper, B., Meir, Z., Edelbacher, N., Merai, Z., Datta, S., Dolan, L.

Date: 2025-11-11 · Version: 1
DOI: 10.1101/2025.11.10.687525

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study demonstrates that red and blue light have opposing effects on thallus growth orientation in Marchantia polymorpha, with red light promoting epinasty and blue light promoting hyponasty. Loss-of-function mutants in the respective photoreceptors and BBX transcription factors reveal antagonistic interactions that balance thallus flatness under white light. Time‑resolved transcriptomics identified rapid light‑induced genes, including all six MpBBX members, whose mutant phenotypes support this antagonistic model.

light signaling thallus tropism Marchantia polymorpha photoreceptor mutants BBX transcription factors

Sphingolipid-driven interleaflet coupling orchestrates Rho-GTPase recruitment to nanodomains for signal activation in plants

Authors: Montrazi, M., Poitout, A., Depenveiller, C., Bayle, V., Nagano, M., Mamode Cassim, A., Jolivet, M.-D., Fiche, J.-B., Sarazin, C., Fouillen, L., Simon-Plas, F., Crowet, J.-M., Jaillais, Y., MONGRAND, S., Martiniere, A., BOUTTE, Y.

Date: 2025-11-07 · Version: 1
DOI: 10.1101/2025.11.06.686946

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that very long chain sphingolipids in the outer membrane leaflet interdigitate with inner‑leaflet phosphatidylserine, forming a vertical bridge that organizes PS nanodomains and enables auxin‑induced activation of the Rho‑GTPase ROP6. Disruption of sphingolipid biosynthesis disperses these nanodomains, impairing ROP6 signaling, cytoskeletal dynamics, and directional growth, highlighting interleaflet coupling as a key mechanism linking membrane asymmetry to plant signal transduction.

interleaflet coupling sphingolipids phosphatidylserine nanodomains ROP6 activation auxin signaling

Nanoclustering of a plant transcription factor enables strong yet specific DNA binding

Authors: Arfman, K., Janssen, B. P. J., Romein, R., van den Boom, S., van der Woude, M., Jansen, L., Rademaker, M., Hernandez-Garcia, J., Ramalho, J. J., Dipp-Alvarez, M., Borst, J. W., Weijers, D., van Mierlo, C. P. M., Sprakel, J.

Date: 2025-11-06 · Version: 1
DOI: 10.1101/2025.11.05.686732

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study reveals that the Auxin Response Factor MpARF2 in Marchantia polymorpha forms nanoscopic clusters within the plant nucleus, representing a distinct mode of DNA binding distinct from monomeric/oligomeric binding and liquid phase-separated condensates. These nanoclusters provide high‑affinity, switch‑like, sequence‑specific DNA interaction, suggesting a novel mechanism for transcriptional regulation by TF nanoclustering.

Transcription factor nanoclusters Auxin Response Factors Liquid phase separation Marchantia polymorpha DNA‑binding specificity

Conservation and divergence of UVR8-COP1/SPA-HY5 signaling in UV-B responses of Marchantia polymorpha

Authors: Liang, Y., Podolec, R., Chappuis, R., Defossez, E., Glauser, G., Rötzer, J., Stolze, S. C., Dolan, L., Nakagami, H., Demarsy, E., Ulm, R.

Date: 2025-11-04 · Version: 2
DOI: 10.1101/2025.07.16.665153

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study reveals that in the liverwort Marchantia polymorpha, the UV‑B photoreceptor MpUVR8 forms homodimers that monomerize and accumulate in the nucleus upon UV‑B exposure, activating COP1‑dependent growth inhibition, gene expression reprogramming, and UV‑absorbing metabolite production. MpRUP promotes redimerization of MpUVR8, acting as a negative regulator, while MpSPA also negatively modulates UVR8 signaling, indicating lineage‑specific diversification of UV‑B signaling components that originated over 400 Myr ago.

UV‑B signaling Marchantia polymorpha MpUVR8 COP1 RUP
Previous Page 2 of 8 Next