Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

A hydrophobic core in the coiled-coil domain is essential for NRC resistosome function

Authors: Wang, H.-Y., Yuen, E. L. H., Lee, K.-T., Goh, F.-J., Bozkurt, T. O., Wu, C.-H.

Date: 2025-04-08 · Version: 2
DOI: 10.1101/2025.01.21.634219

Category: Plant Biology

Model Organism: General

AI Summary

The study identifies a conserved hydrophobic core within the coiled‑coil (CC) domain of helper NLRs (NRCs) that is essential for NRC4-mediated cell death and immunity. Structural and functional analyses show that this core regulates subcellular localization, oligomerization, and phospholipid association of NRC4, highlighting a novel mechanistic feature of NLR function.

NLR coiled-coil domain hydrophobic core NRC4 plant immunity

Impaired methyl recycling induces substantial shifts in sulfur utilization in Arabidopsis

Authors: Tremblay, B. J.-M., Adeel, S. A., Saechao, M., Dong, Y., Andrianasolo, E., Steele, J. M., Traa, A., Yogadasan, N., Waduwara-Jayabahu, I., Katzenback, B. A., Hell, R., Wirtz, M., Moffatt, B. A.

Date: 2025-03-13 · Version: 1
DOI: 10.1101/2025.03.09.642221

Category: Plant Biology

Model Organism: General

AI Summary

Reduced activity of methylthioadenosine (MTA) nucleosidase causes MTA over‑accumulation in reproductive tissues, leading to lowered cysteine, methionine, and S‑adenosylmethionine levels and altered sulfur and energy metabolism. These metabolic disturbances trigger misregulation of cell‑cycle progression, widespread down‑regulation of developmental genes, and genome‑wide changes in DNA methylation patterns, highlighting the extensive role of MTA recycling in plant growth and methyl‑index maintenance.

sulfur metabolism methylthioadenosine nucleosidase methionine/S‑adenosylmethionine biosynthesis DNA methylation reproductive development