Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 54 Papers

Phosphite, an analog of phosphate, counteracts Phosphate Induced Susceptibility of rice to the blast fungus Magnaporthe oryzae

Authors: Mallavarapu, M. D., Martin-Cardoso, H., Bücker, G., Alussi, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.700763

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.

phosphite (Phi) phosphate (Pi) plant immunity pathogen resistance transcriptomic reprogramming

Initiation of asexual reproduction by the AP2/ERF gene GEMMIFER in Marchantia polymorpha

Authors: Takahashi, G., Yamaya, S., Romani, F., Bonter, I., Ishizaki, K., Shimamura, M., Kiyosue, T., Haseloff, J., Hirakawa, Y.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699827

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identifies the AP2/ERF transcription factor GEMMIFER (MpGMFR) as essential for asexual reproduction in the liverwort Marchantia polymorpha, showing that loss of MpGMFR via genome editing or amiRNA abolishes gemma and gemma cup formation, while dexamethasone‑induced activation triggers their development. Transient strong activation of MpGMFR initiates gemma initial cells at the meristem, which mature into functional gemmae, indicating MpGMFR is both necessary and sufficient for meristem‑derived asexual propagule formation.

MpGMFR AP2/ERF gemmae Marchantia polymorpha asexual reproduction

Effects of atmospheric CO2 levels on the susceptibility of maize to diverse pathogens

Authors: Khwanbua, E., Qi, Y., Ssengo, J., Liu, P., Graham, M. A., Whitham, S.

Date: 2026-01-02 · Version: 1
DOI: 10.64898/2025.12.31.697224

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.

elevated CO₂ maize plant immunity pathogen susceptibility C4 crops

In vivo binding by Arabidopsis SPLICING FACTOR 1 shifts 3' splice site choice, regulating circadian rhythms and immunity in plants

Authors: Agrofoglio, Y. C., Iglesias, M. J., de Leone, M. J., Hernando, C. E., Lewinski, M., Torres, S. B., Contino, G., Yanovsky, M. J., Staiger, D., Mateos, J. L.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.17.693997

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the plant spliceosomal protein AtSF1 in Arabidopsis thaliana, using iCLIP and RNA‑seq to map its in vivo branch point binding sites and demonstrate that loss of AtSF1 causes widespread 3' splice‑site mis‑selection. Structural comparison reveals a plant‑specific domain architecture, and the identified AtSF1 targets are enriched for circadian and defense genes, linking splicing regulation to timing and immunity.

alternative splicing branch point recognition AtSF1 circadian clock regulation plant immunity

A SABATH family enzyme regulates development via the gibberellin-related pathway in the liverwort Marchantia polymorpha

Authors: Kawamura, S., Shimokawa, E., Ito, M., Nakamura, I., Kanazawa, T., Iwano, M., Sun, R., Yoshitake, Y., Yamaoka, S., Yamaguchi, S., Ueda, T., Kato, M., Kohchi, T.

Date: 2025-12-13 · Version: 1
DOI: 10.64898/2025.12.11.693594

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identified 12 SABATH methyltransferase genes in the liverwort Marchantia polymorpha and demonstrated that MpSABATH2 is crucial for normal thallus growth and gemma cup formation. Loss‑of‑function mutants displayed developmental phenotypes reminiscent of far‑red light responses, which were linked to gibberellin metabolism and could be partially rescued by inhibiting GA biosynthesis or supplying the GA precursor ent‑kaurenoic acid. These findings suggest that SABATH enzymes independently evolved regulatory roles in land‑plant development.

SABATH methyltransferases Marchantia polymorpha gibberellin metabolism far‑red light response developmental regulation

Carbon availability acts via cytokinins to promote gemma cup formation in Marchantia polymorpha

Authors: Humphreys, J. L., Fisher, T. J., Perez, T. A., Flores-Sandoval, E., Silvestri, A., Rubio-Somoza, I., Barbier, F. F.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.08.692956

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study demonstrates that carbon availability promotes gemma cup formation in Marchantia polymorpha by activating cytokinin signaling, which up‑regulates the transcription factors MpGCAM1 and MpSTG. Pharmacological and genetic manipulations showed that cytokinin accumulation in response to sucrose and high light is sufficient to overcome low‑sucrose repression, and that this pathway operates independently of KAI2A‑MAX2 mediated karrikin signaling. The findings suggest a conserved carbon‑cytokinin interaction governing developmental plasticity across land plants.

gemma cup formation carbon availability cytokinin signaling Marchantia polymorpha MpGCAM1/MpSTG transcription factors

The functional divergence of two ethylene receptor subfamilies that exhibit Ca2+-permeable channel activity

Authors: Pan, C., Cheng, J., Lin, Z., Hao, D., Xiao, Z., Ming, Y., Song, W., Liu, L., Guo, H.

Date: 2025-11-29 · Version: 1
DOI: 10.1101/2025.11.28.691086

Category: Plant Biology

Model Organism: General

AI Summary

The study demonstrates that subfamily I ethylene receptors form the core ethylene‑sensing module and act epistatically over subfamily II receptors, uniquely possessing Ca2+‑permeable channel activity that drives ethylene‑induced cytosolic calcium influx. This reveals a mechanistic link whereby subfamily I receptors integrate hormone perception with calcium signaling in plants.

ethylene signaling subfamily I receptors Ca2+ influx epistasis hormone‑induced calcium channel

MpNPR modulates lineage-specific oil body development and defence against gastropod herbivory in Marchantia polymorpha

Authors: Espinosa-Cores, L., Michavila, S., Gonzalez-Zuloaga, M., Solano, R., Gimenez-Ibanez, S.

Date: 2025-11-17 · Version: 1
DOI: 10.1101/2025.11.17.688000

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study characterizes the liverwort-specific NPR protein (MpNPR) in Marchantia polymorpha, demonstrating that it controls oil body formation and confers resistance to gastropod herbivory through interaction with the transcription factor MpERF13. Loss- or gain-of-function of MpNPR disrupts MpERF13‑dependent gene expression and compromises defense against snail feeding, revealing a lineage‑specific immune pathway distinct from tracheophyte NPR functions.

Marchantia polymorpha NPR signaling oil body formation MpERF13 gastropod herbivory

Antagonism between blue and red light-signalling controls thallus flatness in Marchantia polymorpha

Authors: Roetzer, J., Asper, B., Meir, Z., Edelbacher, N., Merai, Z., Datta, S., Dolan, L.

Date: 2025-11-11 · Version: 1
DOI: 10.1101/2025.11.10.687525

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study demonstrates that red and blue light have opposing effects on thallus growth orientation in Marchantia polymorpha, with red light promoting epinasty and blue light promoting hyponasty. Loss-of-function mutants in the respective photoreceptors and BBX transcription factors reveal antagonistic interactions that balance thallus flatness under white light. Time‑resolved transcriptomics identified rapid light‑induced genes, including all six MpBBX members, whose mutant phenotypes support this antagonistic model.

light signaling thallus tropism Marchantia polymorpha photoreceptor mutants BBX transcription factors

Nanoclustering of a plant transcription factor enables strong yet specific DNA binding

Authors: Arfman, K., Janssen, B. P. J., Romein, R., van den Boom, S., van der Woude, M., Jansen, L., Rademaker, M., Hernandez-Garcia, J., Ramalho, J. J., Dipp-Alvarez, M., Borst, J. W., Weijers, D., van Mierlo, C. P. M., Sprakel, J.

Date: 2025-11-06 · Version: 1
DOI: 10.1101/2025.11.05.686732

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study reveals that the Auxin Response Factor MpARF2 in Marchantia polymorpha forms nanoscopic clusters within the plant nucleus, representing a distinct mode of DNA binding distinct from monomeric/oligomeric binding and liquid phase-separated condensates. These nanoclusters provide high‑affinity, switch‑like, sequence‑specific DNA interaction, suggesting a novel mechanism for transcriptional regulation by TF nanoclustering.

Transcription factor nanoclusters Auxin Response Factors Liquid phase separation Marchantia polymorpha DNA‑binding specificity
Page 1 of 6 Next