Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 3 Papers

Membrane-binding domains define REMORIN phylogeny and provide a predicted structural basis for distinctive membrane nano-environments

Authors: Biermann, D., Gronnier, J.

Date: 2025-12-23 · Version: 1
DOI: 10.64898/2025.12.22.695504

Category: Plant Biology

Model Organism: General

AI Summary

The study reveals that REMORIN protein evolution is primarily driven by diversification of their conserved C-terminal domain, defining four major clades. Structural bioinformatics predicts a common membrane‑binding interface with diverse curvatures and lengths, and suggests that some REMs can form C‑terminal‑mediated oligomers, adding complexity to membrane organization.

REMORIN proteins C-terminal domain membrane nano-organization phylogenetic analysis structural bioinformatics

Guard Cell-Enriched Phosphoproteome Reveals Phosphorylation of Endomembrane Proteins in Closed Stomata

Authors: Pullen, A.-M., Lyons, S., Mordant, A., Herring, L. E., Akpa, B., Rojas-Pierce, M.

Date: 2025-10-15 · Version: 1
DOI: 10.1101/2025.10.15.682613

Category: Plant Biology

Model Organism: General

AI Summary

The study generated deep proteome and phosphoproteome datasets from guard cell‑enriched tissue to examine how phosphorylation regulates stomatal movements. Comparative analysis revealed increased phosphorylation of endomembrane trafficking and vacuolar proteins in closed stomata, supporting a role for phospho‑regulated trafficking in stomatal dynamics.

stomatal aperture guard cells phosphorylation endomembrane trafficking proteomics

A hydrophobic core in the coiled-coil domain is essential for NRC resistosome function

Authors: Wang, H.-Y., Yuen, E. L. H., Lee, K.-T., Goh, F.-J., Bozkurt, T. O., Wu, C.-H.

Date: 2025-04-08 · Version: 2
DOI: 10.1101/2025.01.21.634219

Category: Plant Biology

Model Organism: General

AI Summary

The study identifies a conserved hydrophobic core within the coiled‑coil (CC) domain of helper NLRs (NRCs) that is essential for NRC4-mediated cell death and immunity. Structural and functional analyses show that this core regulates subcellular localization, oligomerization, and phospholipid association of NRC4, highlighting a novel mechanistic feature of NLR function.

NLR coiled-coil domain hydrophobic core NRC4 plant immunity