Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 81 Papers

Multi-Level Characterization Reveals Divergent Heat Response Strategies Across Wheat Genotypes of Different Ploidy

Authors: Arenas-M, A., Mino, I., Uauy, C., Calderini, D. F., Canales, J.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701169

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Field experiments combined with RNA sequencing revealed that wheat ploidy influences heat stress resilience, with tetraploid T. turgidum showing the smallest yield loss and hexaploid T. aestivum mounting the largest transcriptional response. Ploidy-dependent differences were observed in differential gene expression, alternative splicing—including hexaploid-specific exon skipping of NF‑YB—and co‑expression networks linked to grain traits, highlighting candidate pathways for breeding heat‑tolerant wheat.

heat stress wheat ploidy RNA sequencing differential gene expression alternative splicing

Phosphite, an analog of phosphate, counteracts Phosphate Induced Susceptibility of rice to the blast fungus Magnaporthe oryzae

Authors: Mallavarapu, M. D., Martin-Cardoso, H., Bücker, G., Alussi, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.700763

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.

phosphite (Phi) phosphate (Pi) plant immunity pathogen resistance transcriptomic reprogramming

Ultra large-scale 2D clinostats uncover environmentally derived variation in tomato responses to simulated microgravity

Authors: Hostetler, A. N., Kennebeck, E., Reneau, J. W., Birtell, E., Caldwell, D. L., Iyer-Pascuzzi, A. S., Sparks, E. E.

Date: 2026-01-13 · Version: 2
DOI: 10.1101/2025.05.16.654566

Category: Plant Biology

Model Organism: Solanum lycopersicum (tomato)

AI Summary

The study employed ultra large‑scale 2D clinostats to grow tomato (Solanum lycopersicum) plants beyond the seedling stage under simulated microgravity and upright control conditions across five sequential trials. Simulated microgravity consistently affected plant growth, but the magnitude and direction of the response varied among trials, with temperature identified as a significant co‑variant; moderate heat stress surprisingly enhanced growth under simulated microgravity. These results highlight the utility of large‑scale clinostats for dissecting interactions between environmental factors and simulated microgravity in plant development.

simulated microgravity ultra large-scale clinostat tomato (Solanum lycopersicum) heat stress plant growth interaction

The STA1-DOT2 interaction promotes nuclear speckle formation and splicing robustness in growth and heat stress responses

Authors: Kim, H., Yu, K.-j., Park, S. Y., Seo, D. H., Jeong, D.-H., Kim, W. T., Yun, D.-J., Lee, B.-h.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.11.698856

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the interaction between spliceosomal proteins STA1 and DOT2 controls nuclear speckle organization, pre‑mRNA splicing efficiency, and heat‑stress tolerance in Arabidopsis thaliana. A missense mutation in DOT2 restores the weakened STA1‑DOT2 interaction in the sta1‑1 mutant, linking interaction strength to speckle formation and transcriptome‑wide intron retention under heat stress, while pharmacological inhibition of STA1‑associated speckles reproduces the mutant phenotypes. These findings reveal a heat‑sensitive interaction node that couples spliceosome assembly to nuclear speckle dynamics and splicing robustness.

spliceosome nuclear speckles STA1‑DOT2 interaction heat stress Arabidopsis thaliana

Effects of atmospheric CO2 levels on the susceptibility of maize to diverse pathogens

Authors: Khwanbua, E., Qi, Y., Ssengo, J., Liu, P., Graham, M. A., Whitham, S.

Date: 2026-01-02 · Version: 1
DOI: 10.64898/2025.12.31.697224

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.

elevated CO₂ maize plant immunity pathogen susceptibility C4 crops

MATERNAL AUTOPHAGY CONTRIBUTES TO GRAIN YIELD IN MAIZE

Authors: Tang, J., Avin-Wittenberg, T., Vollbrecht, E., Bassham, D.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697098

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study shows that maize plants carrying autophagy-defective atg10 mutations exhibit delayed flowering and significant reductions in kernel size, weight, and number, culminating in lower grain yield. Reciprocal crossing experiments reveal that the maternal genotype, rather than the seed genotype, primarily drives the observed kernel defects, suggesting impaired nutrient remobilization from maternal tissues during seed development.

autophagy atg10 mutant maize yield maternal effect nutrient remobilization

The interplay between autophagy and the carbon/nitrogen ratio as key modulator of the auxin-dependent chloronema-caulonema developmental transition in Physcomitrium patens.

Authors: Pettinari, G., Liberatore, F., Mary, V., Theumer, M., Lascano, R., Saavedra, L. L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.28.696759

Category: Plant Biology

Model Organism: Physcomitrium patens

AI Summary

Using the bryophyte Physcomitrium patens, the study shows that loss of autophagy enhances auxin‑driven caulonemata differentiation and colony expansion under low nitrogen or imbalanced carbon/nitrogen conditions, accompanied by higher internal IAA, reduced PpPINA expression, and up‑regulated RSL transcription factors. Autophagy appears to suppress auxin‑induced differentiation during nutrient stress, acting as a hub that balances metabolic cues with hormonal signaling.

autophagy auxin signaling carbon/nitrogen ratio Physcomitrium patens caulonemata development

Dynamic regulation of protein homeostasis underlies acquiredthermotolerance in Arabidopsis

Authors: Bajaj, M., Allu, A. D., Rao, B. J.

Date: 2025-12-26 · Version: 3
DOI: 10.1101/2023.08.04.552042

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Thermopriming enhances heat stress tolerance by orchestrating protein maintenance pathways: it activates the heat shock response (HSR) via HSFA1 and the unfolded protein response (UPR) while modulating autophagy to clear damaged proteins. Unprimed seedlings cannot mount these responses, leading to proteostasis collapse, protein aggregation, and death, highlighting the primacy of HSR and protein maintenance over clearance mechanisms.

thermopriming heat shock response unfolded protein response autophagy proteostasis

Membrane-binding domains define REMORIN phylogeny and provide a predicted structural basis for distinctive membrane nano-environments

Authors: Biermann, D., Gronnier, J.

Date: 2025-12-23 · Version: 1
DOI: 10.64898/2025.12.22.695504

Category: Plant Biology

Model Organism: General

AI Summary

The study reveals that REMORIN protein evolution is primarily driven by diversification of their conserved C-terminal domain, defining four major clades. Structural bioinformatics predicts a common membrane‑binding interface with diverse curvatures and lengths, and suggests that some REMs can form C‑terminal‑mediated oligomers, adding complexity to membrane organization.

REMORIN proteins C-terminal domain membrane nano-organization phylogenetic analysis structural bioinformatics

Alternative splicing of PIF4 regulates plant development under heat stress

Authors: Gonzalez, M. N., Alary, B., Szakonyi, D., Laloum, T., Duque, P., Martin, G.

Date: 2025-12-18 · Version: 1
DOI: 10.64898/2025.12.17.694898

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identified a heat‑responsive exon‑skipping event in the basic Helix‑Loop‑Helix domain of the transcription factor PIF4, which reduces PIF4 activity and promotes photomorphogenic traits in etiolated seedlings. This reveals a novel post‑transcriptional mechanism by which plants modulate PIF4 function during heat stress.

PIF4 alternative splicing heat stress photomorphogenesis post‑transcriptional regulation
Page 1 of 9 Next