Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 93 Papers

Phosphite, an analog of phosphate, counteracts Phosphate Induced Susceptibility of rice to the blast fungus Magnaporthe oryzae

Authors: Mallavarapu, M. D., Martin-Cardoso, H., Bücker, G., Alussi, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.700763

Category: Plant Biology

Model Organism: Multi-species

AI Summary

Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.

phosphite (Phi) phosphate (Pi) plant immunity pathogen resistance transcriptomic reprogramming

Initiation of asexual reproduction by the AP2/ERF gene GEMMIFER in Marchantia polymorpha

Authors: Takahashi, G., Yamaya, S., Romani, F., Bonter, I., Ishizaki, K., Shimamura, M., Kiyosue, T., Haseloff, J., Hirakawa, Y.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699827

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identifies the AP2/ERF transcription factor GEMMIFER (MpGMFR) as essential for asexual reproduction in the liverwort Marchantia polymorpha, showing that loss of MpGMFR via genome editing or amiRNA abolishes gemma and gemma cup formation, while dexamethasone‑induced activation triggers their development. Transient strong activation of MpGMFR initiates gemma initial cells at the meristem, which mature into functional gemmae, indicating MpGMFR is both necessary and sufficient for meristem‑derived asexual propagule formation.

MpGMFR AP2/ERF gemmae Marchantia polymorpha asexual reproduction

A drought stress-induced MYB transcription factor regulates pavement cell shape in leaves of European aspen (Populus tremula)

Authors: Liu, S., Doyle, S. M., Robinson, K. M., Rahneshan, Z., Street, N. R., Robert, S.

Date: 2026-01-16 · Version: 1
DOI: 10.64898/2026.01.16.699252

Category: Plant Biology

Model Organism: Populus tremula

AI Summary

The study examined leaf pavement cell shape complexity across a natural European aspen (Populus tremula) population, using GWAS to pinpoint the transcription factor MYB305a as a regulator of cell geometry. Functional validation showed that MYB305a expression is induced by drought and contributes to shape simplification, with cell complexity negatively correlated with water-use efficiency and climatic variables of the genotypes' origin.

leaf pavement cells Populus tremula MYB305a GWAS drought stress

Wheat diversity reveals new genomic loci and candidate genes for vegetation indices using genome-wide association analysis

Authors: Rustamova, S., Jahangirov, A., Leon, J., Naz, A. A., Huseynova, I.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.14.699455

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

A genome‑wide association study of 187 bread wheat genotypes identified 812 significant loci linked to 25 spectral vegetation indices under rainfed drought conditions, revealing a major QTL hotspot on chromosome 2A that accounts for up to 20% of variance in greenness and pigment traits. Candidate gene analysis at this hotspot uncovered stress‑responsive genes, demonstrating that vegetation indices are heritable digital phenotypes useful for selection and genetic analysis of drought resilience.

Triticum aestivum drought stress spectral vegetation indices GWAS QTL hotspot

CRK5 preserves antioxidant homeostasis and prevents cell death during dark-induced senescence through inhibiting the salicylic acid signaling pathway

Authors: Kamran, M., Burdiak, P., Rusaczonek, A., Zarrin Ghalami, R., Karpinski, S.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.12.698963

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the cysteine‑rich receptor‑like kinase CRK5 as a negative regulator of salicylic‑acid‑mediated cell death and a positive regulator of antioxidant homeostasis during dark‑induced leaf senescence in Arabidopsis. Loss‑of‑function crk5 mutants display accelerated senescence, elevated ROS and electrolyte leakage, and altered antioxidant enzyme activities, phenotypes that are rescued by suppressing SA biosynthesis or catabolism. Transcriptome analysis reveals extensive deregulation of senescence‑ and redox‑related genes, highlighting CRK5’s central role in coordinating hormonal and oxidative pathways.

dark-induced senescence salicylic acid signaling CRK5 receptor kinase reactive oxygen species antioxidant homeostasis

Effects of atmospheric CO2 levels on the susceptibility of maize to diverse pathogens

Authors: Khwanbua, E., Qi, Y., Ssengo, J., Liu, P., Graham, M. A., Whitham, S.

Date: 2026-01-02 · Version: 1
DOI: 10.64898/2025.12.31.697224

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.

elevated CO₂ maize plant immunity pathogen susceptibility C4 crops

In vivo binding by Arabidopsis SPLICING FACTOR 1 shifts 3' splice site choice, regulating circadian rhythms and immunity in plants

Authors: Agrofoglio, Y. C., Iglesias, M. J., de Leone, M. J., Hernando, C. E., Lewinski, M., Torres, S. B., Contino, G., Yanovsky, M. J., Staiger, D., Mateos, J. L.

Date: 2025-12-17 · Version: 1
DOI: 10.64898/2025.12.17.693997

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the plant spliceosomal protein AtSF1 in Arabidopsis thaliana, using iCLIP and RNA‑seq to map its in vivo branch point binding sites and demonstrate that loss of AtSF1 causes widespread 3' splice‑site mis‑selection. Structural comparison reveals a plant‑specific domain architecture, and the identified AtSF1 targets are enriched for circadian and defense genes, linking splicing regulation to timing and immunity.

alternative splicing branch point recognition AtSF1 circadian clock regulation plant immunity

A SABATH family enzyme regulates development via the gibberellin-related pathway in the liverwort Marchantia polymorpha

Authors: Kawamura, S., Shimokawa, E., Ito, M., Nakamura, I., Kanazawa, T., Iwano, M., Sun, R., Yoshitake, Y., Yamaoka, S., Yamaguchi, S., Ueda, T., Kato, M., Kohchi, T.

Date: 2025-12-13 · Version: 1
DOI: 10.64898/2025.12.11.693594

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study identified 12 SABATH methyltransferase genes in the liverwort Marchantia polymorpha and demonstrated that MpSABATH2 is crucial for normal thallus growth and gemma cup formation. Loss‑of‑function mutants displayed developmental phenotypes reminiscent of far‑red light responses, which were linked to gibberellin metabolism and could be partially rescued by inhibiting GA biosynthesis or supplying the GA precursor ent‑kaurenoic acid. These findings suggest that SABATH enzymes independently evolved regulatory roles in land‑plant development.

SABATH methyltransferases Marchantia polymorpha gibberellin metabolism far‑red light response developmental regulation

GWAs reveals SUBER GENE1-mediated suberization via Type One Phosphatases

Authors: Han, J.-P., Lefebvre-Legendre, L., Yu, J., Capitao, M. B., Beaulieu, C., Gully, K., Shukla, V., Wu, Y., Boland, A., Nawrath, C., Barberon, M.

Date: 2025-12-12 · Version: 2
DOI: 10.1101/2025.05.06.652434

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Using a forward genetic screen of 284 Arabidopsis thaliana accessions, the study identified extensive natural variation in root endodermal suberin and pinpointed the previously unknown gene SUBER GENE1 (SBG1) as a key regulator. GWAS and protein interaction analyses revealed that SBG1 controls suberin deposition by binding type‑one protein phosphatases (TOPPs), with disruption of this interaction or TOPP loss‑of‑function altering suberin levels, linking the pathway to ABA signaling.

suberin deposition Arabidopsis thaliana GWAS SBG1 TOPP phosphatases

Carbon availability acts via cytokinins to promote gemma cup formation in Marchantia polymorpha

Authors: Humphreys, J. L., Fisher, T. J., Perez, T. A., Flores-Sandoval, E., Silvestri, A., Rubio-Somoza, I., Barbier, F. F.

Date: 2025-12-09 · Version: 1
DOI: 10.64898/2025.12.08.692956

Category: Plant Biology

Model Organism: Marchantia polymorpha

AI Summary

The study demonstrates that carbon availability promotes gemma cup formation in Marchantia polymorpha by activating cytokinin signaling, which up‑regulates the transcription factors MpGCAM1 and MpSTG. Pharmacological and genetic manipulations showed that cytokinin accumulation in response to sucrose and high light is sufficient to overcome low‑sucrose repression, and that this pathway operates independently of KAI2A‑MAX2 mediated karrikin signaling. The findings suggest a conserved carbon‑cytokinin interaction governing developmental plasticity across land plants.

gemma cup formation carbon availability cytokinin signaling Marchantia polymorpha MpGCAM1/MpSTG transcription factors
Page 1 of 10 Next