Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The circadian clock gates lateral root development
Authors: Nomoto, S., Mamerto, A., Ueno, S., Maeda, A. E., Kimura, S., Mase, K., Kato, A., Suzuki, T., Inagaki, S., Sakaoka, S., Nakamichi, N., Michael, T. P., Tsukagoshi, H.
The study identifies the circadian clock component ELF3 as a temporal gatekeeper that limits hormone‑induced pericycle proliferation and lateral root development in Arabidopsis thaliana. Time‑resolved transcriptomics, imaging, and genetic analyses show that ELF3 maintains rhythmic expression of key regulators via LNK1 and MADS‑box genes, and that loss of ELF3 disrupts this rhythm, enhancing callus growth and accelerating root organogenesis.
The study reveals that the microtubule-associated protein MAP70-2 integrates mechanical and biochemical signals to guide division plane orientation during early lateral root primordium formation in Arabidopsis thaliana. Dynamic MAP70-2 localization to cell corners and the cortical division zone precedes cytokinesis, and loss of MAP70-2 results in misoriented divisions and malformed lateral roots, highlighting its role in three‑dimensional differential growth under mechanical constraints.
The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.
In vivo binding by Arabidopsis SPLICING FACTOR 1 shifts 3' splice site choice, regulating circadian rhythms and immunity in plants
Authors: Agrofoglio, Y. C., Iglesias, M. J., de Leone, M. J., Hernando, C. E., Lewinski, M., Torres, S. B., Contino, G., Yanovsky, M. J., Staiger, D., Mateos, J. L.
The study characterizes the plant spliceosomal protein AtSF1 in Arabidopsis thaliana, using iCLIP and RNA‑seq to map its in vivo branch point binding sites and demonstrate that loss of AtSF1 causes widespread 3' splice‑site mis‑selection. Structural comparison reveals a plant‑specific domain architecture, and the identified AtSF1 targets are enriched for circadian and defense genes, linking splicing regulation to timing and immunity.
Authors: Baer, M., Zhong, Y., Yu, B., Tian, T., He, X., Gu, L., Huang, X., Gallina, E., Metzen, I. E., Bucher, M., Song, R., Gutjahr, C., SU, Z., Moya, Y., von Wiren, N., Zhang, L., Yuan, L., Shi, Y., Wang, S., Qi, W., Baer, M., Zhao, Z., Li, C., Li, X., Hochholdinger, F., Yu, P.
The study uncovers how arbuscular mycorrhizal (AM) fungi induce lateral root formation in maize by activating ethylene‑responsive transcription factors (ERFs) that regulate pericycle cell division and reshape flavonoid metabolism, lowering inhibitory flavonols. It also shows that the rhizobacterium Massilia collaborates with AM fungi, degrading flavonoids and supplying auxin, thereby creating an integrated ethylene‑flavonoid‑microbe signaling network that can be harnessed to improve nutrient uptake and crop sustainability.
A genome-wide survey identified 217 EXO70 genes across five kiwifruit (Actinidia spp.) species, classifying them into three subfamilies and nine clades and revealing lineage‑specific expansions, especially in EXO70C, EXO70E, and EXO70H. Functional assays demonstrated that kiwifruit EXO70B1 interacts with the immune hub protein RIN4_1, suggesting a conserved EXO70‑RIN4 module in plant immunity. The study provides a foundational resource for exploring EXO70‑mediated disease resistance in kiwifruit.
The study reveals that the energy sensor SnRK1 modulates Arabidopsis defense by repressing SA‑dependent gene expression and bacterial resistance, with its activity enhanced under high humidity. SnRK1 interacts with TGA transcription factors to attenuate PR1 expression, linking cellular energy status to immune regulation.
The study characterizes the single-copy S-nitrosoglutathione reductase 1 (MpGSNOR1) in the liverwort Marchantia polymorpha, showing that loss-of-function mutants generated via CRISPR/Cas9 exhibit marked morphological defects and compromised SNO homeostasis and immune responses. These findings indicate that GSNOR-mediated regulation of S‑nitrosylation is an ancient mechanism linking development and immunity in early land plants.
NUDIX Hydrolases Target Specific Inositol Pyrophosphates and Regulate Phosphate Homeostasis and Bacterial Pathogen Susceptibility in Arabidopsis
Authors: Schneider, R., Lami, K., Prucker, I., Stolze, S. C., Strauss, A., Schmidt, J. M., Bartsch, S. M., Langenbach, K., Lange, E., Ritter, K., Furkert, D., Faiss, N., Kumar, S., Hasan, M. S., Makris, A., Krusenbaum, L., Wege, S., Belay, Y. Z., Kriescher, S., The, J., Harings, M., Grundler, F., Ried-Lasi, M. K., Schoof, H., Gaugler, P., Kamleitner, M., Fiedler, D., Nakagami, H., Giehl, R. F., Lahaye, T., Bhattacharjee, S., Jessen, H. J., Gaugler, V., Schaaf, G.
The study identified two subclades of Arabidopsis NUDIX hydrolases that selectively hydrolyze distinct inositol pyrophosphate isomers, with subclade I targeting 4-InsP7 and subclade II targeting 3-InsP7 in a Mg2+-dependent manner. Loss-of-function mutants of subclade II NUDTs displayed disrupted phosphate and iron homeostasis, elevated 1/3-InsP7 levels, and increased resistance to Pseudomonas syringae, revealing roles in nutrient signaling and plant immunity, while cross-kingdom analyses showed conserved PP-InsP‑metabolizing activities.