CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds
Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.
The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.
Integrating physiological, transcriptomic, and cellular analyses, the study shows that olive fruit abscission zones undergo lignification, alkalization, and extensive cell‑wall remodeling during natural maturation and after ethephon treatment. A set of 733 FAZ‑specific genes, including β‑1,3‑glucanases, pectate lyases, and pH‑regulating transporters, were identified, and increased glucanase activity together with reduced plasmodesmata callose suggest enhanced intercellular communication facilitates organ detachment in this non‑climacteric fruit.
Thermotolerant pollen tube growth is controlled by RALF signaling.
Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.
The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.
The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.
The study generated deep proteome and phosphoproteome datasets from guard cell‑enriched tissue to examine how phosphorylation regulates stomatal movements. Comparative analysis revealed increased phosphorylation of endomembrane trafficking and vacuolar proteins in closed stomata, supporting a role for phospho‑regulated trafficking in stomatal dynamics.
Discovery of tomato UDP-glucosyltransferases involved in bioactive jasmonate homeostasis using limited proteolysis-coupled mass spectrometry
Authors: Venegas-Molina, J., Mohnike, L., Selma Garcia, S., Janssens, H., Colembie, R., Kimpe, I., Jaramillo-Madrid, A. C., Lacchini, E., Winne, J. M., Van Damme, P., Feussner, I., Goossens, A., Sola, K.
The study applied limited proteolysis‑coupled mass spectrometry (LiP‑MS) to map JA‑protein interactions, validating known JA binders and uncovering novel candidates, including several UDP‑glucuronosyltransferases (UGTs). Functional omics, biochemical, enzymatic, and structural analyses demonstrated that two tomato UGTs glucosylate jasmonic acid, revealing a previously missing step in JA catabolism.
Uncovering the Molecular Regulation of Seed Development and Germination in Endangered Legume Paubrasilia echinata Through Proteomic and Polyamine Analyses
Authors: Vettorazzi, R. G., Carrari-Santos, R., Sousa, K. R., Oliveira, T. R., Grativol, C., Olimpio, G., Venancio, T. M., Pinto, V. B., Quintanilha-Peixoto, G., Silveira, V., Santa-Catarna, C.
The study examined seed maturation and germination in the endangered legume Paubrasilia echinata using proteomic and polyamine analyses at 4, 6, and 8 weeks post-anthesis, identifying over 2,000 proteins and linking specific polyamines to developmental stages. Mature seeds (6 weeks) showed elevated proteasome components, translation machinery, LEA proteins, and heat shock proteins, while polyamine dynamics revealed putrescine dominance in early development and spermidine/spermine association with desiccation tolerance and germination. These findings uncover dynamic molecular shifts underlying seed development and provide insights for conservation and propagation.
The study demonstrates that limonene, a natural essential‑oil component, strongly inhibits Fusarium oxysporum, the causal agent of potato dry rot, by impairing colony growth, hyphal morphology, spore viability, membrane integrity, and transcription/translation processes, as well as disrupting ion homeostasis. Combined treatments reveal additive effects with mancozeb and synergistic effects with hymexazol, highlighting limonene's potential as an eco‑friendly bio‑fungicide for potato disease management.
The study investigated metabolic responses of kale (Brassica oleracea) grown under simulated microgravity using a 2-D clinostat versus normal gravity conditions. LC‑MS data were analyzed with multivariate tools such as PCA and volcano plots to identify gravity‑related metabolic adaptations and potential molecular markers for spaceflight crop health.
The study assessed the impact of adding mammalian growth factors and cytokines to transformation media on CRISPR‑Cas9–mediated genome editing in six tomato (Solanum lycopersicum) accessions with varying regeneration capacities. Over three years, supplementation with these factors significantly increased regeneration rates and the production of stable secondary transgenic lines, especially in recalcitrant genotypes.