The study examined three fruit morphotypes of the desert shrub Haloxylon ammodendron, revealing distinct germination performances under salt and drought stress. Proteomic analysis identified 721 differentially expressed proteins, particularly between the YP and PP morphotypes, linking stress‑responsive protein abundance to rapid germination in YP and delayed germination in PP as contrasting adaptive strategies. The findings suggest that fruit polymorphism facilitates niche differentiation and informs germplasm selection for desert restoration.
The study engineers Type‑B response regulators to alter their transcriptional activity and cytokinin sensitivity, enabling precise modulation of cytokinin‑dependent traits. Using tissue‑specific promoters, the synthetic transcription factors were deployed in Arabidopsis thaliana to reliably increase or decrease lateral root numbers, demonstrating a modular platform for controlling developmental phenotypes.
The study tracked molecular changes in plastoglobules and thylakoids of Zea mays B73 during heat stress and recovery, revealing increased plastoglobule size, number, and adjacent lipid droplets over time. Proteomic and lipidomic analyses uncovered up‑regulation of specific plastoglobule proteins and alterations in triacylglycerol, plastoquinone derivatives, and phytol esters, suggesting roles in membrane remodeling and oxidative defense. These insights highlight plastoglobule‑associated pathways as potential targets for enhancing heat resilience in maize.
The study introduced full-length SOC1 genes from maize and soybean, and a partial SOC1 gene from blueberry, into tomato plants under constitutive promoters. While VcSOC1K and ZmSOC1 accelerated flowering, all three transgenes increased fruit number per plant mainly by promoting branching, and transcriptomic profiling revealed alterations in flowering, growth, and stress‑response pathways.
The study identifies the serine/threonine protein kinase CIPK14/SNRK3.15 as a regulator of sulfate‑deficiency responses in Arabidopsis thaliana seedlings, with mutants showing diminished early adaptive and later salvage responses under sulfur starvation. While snrk3.15 mutants exhibit no obvious phenotype under sufficient sulfur, the work provides a novel proteomic dataset comparing wild‑type and mutant seedlings under sulfur limitation.
The study characterizes the tomato class B heat shock factor SlHSFB3a, revealing its age‑dependent expression in roots and its role in enhancing lateral root density by modulating auxin homeostasis. Overexpression of SlHSFB3a increases lateral root emergence, while CRISPR‑mediated knockouts produce the opposite phenotype, indicating that SlHSFB3a regulates auxin signaling through repression of auxin repressors and activation of the ARF7/LOB20 pathway.
The study examined how white lupin (Lupinus albus) cotyledons mobilize nitrogen and minerals during early seedling growth under nitrogen‑deficient conditions, revealing that 60 % of stored proteins degrade within eight days and are redirected to support development. Proteomic analyses showed dynamic shifts in nutrient transport, amino acid metabolism, and stress responses, and premature cotyledon removal markedly impaired growth, highlighting the cotyledon's essential role in nutrient supply and transient photosynthetic activity.
A forward genetic screen in light-grown Arabidopsis seedlings identified the Evening Complex component ELF3 as a key inhibitor of phototropic hypocotyl bending under high red:far-red and blue light, acting upstream of PIF4/PIF5. ELF3 and its partner LUX also mediate circadian regulation of phototropism, and the orthologous ELF3 in Brachypodium distachyon influences phototropism in the opposite direction.
The study characterizes the protein composition of extracellular vesicles (EVs) secreted by the oomycete Phytophthora infestans, revealing enrichment of transmembrane proteins and RxLR effectors, while EV-independent secretions are dominated by cell wall–modifying enzymes. Two MARVEL‑domain proteins, PiMDP1 and PiMDP2, are identified as EV-associated markers that co‑localize with RxLR effectors, with PiMDP2 specifically accumulating at the haustorial interface during early infection, suggesting a role in effector delivery.
The study investigates the altered timing of the core circadian oscillator gene ELF3 in wheat compared to Arabidopsis, revealing that dawn-specific expression in wheat arises from repression by TOC1. An optimized computational model integrating experimental expression data and promoter architecture predicts that wheat’s circadian oscillator remains robust despite this shift, indicating flexibility in plant circadian network design.