The study examined nitrogen use strategies in the model alga Chlamydomonas reinhardtii by comparing growth on ammonium, nitrate, and urea, finding similar molar nitrogen utilization efficiency under saturating conditions. Rapid nitrogen uptake and storage were demonstrated through pulse experiments, and source‑specific transcriptome analysis revealed distinct regulation of assimilation pathways and transporters, supporting a model of flexible nitrogen acquisition and storage.
Characterization of a dominant SmNac-like gene as a candidate for photosensitivity in the fruit peel of eggplant
Authors: Gomis-Cebolla, J., Manrique, S., Arrones, A., Toledo-Tolgar, M. D., Luna, J., Baraja-Fonseca, V., Sanchez-Pascual, J., Gimeno-Paez, E., Plazas, M., Gramazio, P., Vilanova, S., Prohens, J.
The study identified that fruit photosensitivity in eggplant is governed by a single dominant gene, with QTLs clustering at the distal end of chromosome 10 (84.1-87.9 Mb). Bulked segregant analysis sequencing and RNA‑seq highlighted the SmNAC1‑like transcription factor as a likely regulator of anthocyanin accumulation, though no coding sequence mutations were detected, suggesting regulatory control at another level.
The study investigates how maternal environmental conditions, specifically temperature and light intensity, influence seed longevity in eight Arabidopsis thaliana natural accessions. Seeds developed under higher temperature (27 °C) and high light showed increased longevity, with transcriptome analysis of the Bor-4 accession revealing dynamic changes in stored mRNAs, including upregulation of antioxidant defenses and raffinose family oligosaccharides. These findings highlight the genotype‑dependent modulation of seed traits by the maternal environment.
The study generated deep proteome and phosphoproteome datasets from guard cell‑enriched tissue to examine how phosphorylation regulates stomatal movements. Comparative analysis revealed increased phosphorylation of endomembrane trafficking and vacuolar proteins in closed stomata, supporting a role for phospho‑regulated trafficking in stomatal dynamics.
Uncovering the Molecular Regulation of Seed Development and Germination in Endangered Legume Paubrasilia echinata Through Proteomic and Polyamine Analyses
Authors: Vettorazzi, R. G., Carrari-Santos, R., Sousa, K. R., Oliveira, T. R., Grativol, C., Olimpio, G., Venancio, T. M., Pinto, V. B., Quintanilha-Peixoto, G., Silveira, V., Santa-Catarna, C.
The study examined seed maturation and germination in the endangered legume Paubrasilia echinata using proteomic and polyamine analyses at 4, 6, and 8 weeks post-anthesis, identifying over 2,000 proteins and linking specific polyamines to developmental stages. Mature seeds (6 weeks) showed elevated proteasome components, translation machinery, LEA proteins, and heat shock proteins, while polyamine dynamics revealed putrescine dominance in early development and spermidine/spermine association with desiccation tolerance and germination. These findings uncover dynamic molecular shifts underlying seed development and provide insights for conservation and propagation.
Novel substrate affinity of FaCCR1 and FaCCR1/FaOCT4 expression control the content of medium-chain esters in strawberry fruit
Authors: Roldan-Guerra, F. J., Amorim-Silva, V., Jimenez, J., Mari-Albert, A., Torreblanca, R., Ruiz del Rio, J., Botella, M. A., Granell, A., Sanchez-Sevilla, J. F., Castillejo, C., Amaya, I.
The study identified a major QTL on chromosome 6A that accounts for 40% of variation in medium-chain ester (MCE) levels in strawberry fruit, pinpointing FaCCR1 and FaOCT4 as the causal genes. Functional validation through subcellular localization, transient overexpression, enzymatic assays, and molecular docking demonstrated that FaCCR1 also catalyzes MCE precursor reactions, and a KASP marker in FaOCT4 was developed for breeding fragrant cultivars.
The study provides a comprehensive proteomic analysis of seed mitochondria from white lupin, revealing fully assembled OXPHOS complexes ready for immediate energy production upon imbibition. Quantitative mass‑spectrometry identified 1,162 mitochondrial proteins, highlighting tissue‑specific transporter and dehydrogenase profiles and dynamic remodeling during early germination, while many uncharacterized proteins suggest novel legume‑specific functions.
Light on its feet: Acclimation to high and low diurnal light is flexible in Chlamydomonas reinhardtii
Authors: Dupuis, S., Chastain, J. L., Han, G., Zhong, V., Gallaher, S. D., Nicora, C. D., Purvine, S. O., Lipton, M. S., Niyogi, K. K., Iwai, M., Merchant, S. S.
The study examined how prior light‑acclimation influences the fitness and rapid photoprotective reprogramming of Chlamydomonas during transitions between low and high diurnal light intensities. While high‑light‑acclimated cells struggled to grow and complete the cell cycle after shifting to low light, low‑light‑acclimated cells quickly remodeled thylakoid ultrastructure, enhanced photoprotective quenching, and altered photosystem protein levels, recovering chloroplast function within a single day. Transcriptomic and proteomic profiling revealed swift induction of stress‑response genes, indicating high flexibility in diurnal light acclimation.
The study introduces a native‑condition method combining cell fractionation and immuno‑isolation to purify autophagic compartments from Arabidopsis, followed by proteomic and lipidomic characterisation of the isolated phagophore membranes. Proteomic profiling identified candidate proteins linked to autophagy, membrane remodeling, vesicular trafficking and lipid metabolism, while lipidomics revealed a predominance of glycerophospholipids, especially phosphatidylcholine and phosphatidylglycerol, defining the unique composition of plant phagophores.
The study identified seven adult plant resistance QTL for oat crown rust using two recombinant inbred line populations, with a major QTL (QPc_GS7_4A.2) on chromosome 4A closely linked to the Pc61 resistance gene. KASP markers targeting SNPs tightly linked to the four most significant QTL were developed, and genetic and haplotype analyses confirmed the association of QPc_GS7_4A.2 with both seedling and adult plant resistance, providing valuable tools for oat breeding.