Thermotolerant pollen tube growth is controlled by RALF signaling.
Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.
The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.
Daily Heat Stress Induces Accumulation of Non-functional PSII-LHCII and Donor-side Limitation of PSI via Downregulation of the Cyt bf Complex in Arabidopsis thaliana
The study examined the impact of daily moderate heat stress (38 °C for 4 h) on Arabidopsis thaliana, revealing altered thylakoid ultrastructure and structurally intact but functionally impaired PSII‑LHCII complexes. A pronounced reduction in cytochrome b6f content limited PSI on the donor side, suggesting that Cyt b6f down‑regulation serves as an acclimation mechanism that protects PSI at the expense of overall photosynthetic efficiency.
The study investigated how barley (Hordeum vulgare) adjusts mitochondrial respiration under salinity stress using physiological, biochemical, metabolomic and proteomic approaches. Salt treatment increased respiration and activated the canonical TCA cycle, while the GABA shunt remained largely inactive, contrasting with wheat responses.
The study investigates the role of the chromatin regulator MpSWI3, a core subunit of the SWI/SNF complex, in the liverwort Marchantia polymorpha. A promoter mutation disrupts male gametangiophore development and spermiogenesis, causing enhanced vegetative propagation, and transcriptomic analysis reveals that MpSWI3 regulates genes controlling reproductive initiation, sperm function, and asexual reproduction, highlighting its ancient epigenetic role in balancing vegetative and reproductive phases.
Unravelling the intraspecific variation in drought responses in seedlings of European black pine (Pinus nigra J.F. Arnold)
Authors: Ahmad, M., Hammerbacher, A., Priemer, C., Ciceu, A., Karolak, M., Mader, S., Olsson, S., Schinnerl, J., Seitner, S., Schoendorfer, S., Helfenbein, P., Jakub, J., Breuer, M., Espinosa, A., Caballero, T., Ganthaler, A., Mayr, S., Grosskinsky, D. K., Wienkoop, S., Schueler, S., Trujillo-Moya, C., van Loo, M.
The study examined drought tolerance across nine provenances of the conifer Pinus nigra using high‑throughput phenotyping combined with metabolomic and transcriptomic analyses under controlled soil‑drying conditions. Drought tolerance, measured by the decline in Fv/Fm, varied among provenances but was not linked to a climatic gradient and was independent of growth, with tolerant provenances showing distinct flavonoid and diterpene profiles and provenance‑specific gene expression patterns. Integrating phenotypic and molecular data revealed metabolic signatures underlying drought adaptation in this non‑model conifer.
The study generated deep proteome and phosphoproteome datasets from guard cell‑enriched tissue to examine how phosphorylation regulates stomatal movements. Comparative analysis revealed increased phosphorylation of endomembrane trafficking and vacuolar proteins in closed stomata, supporting a role for phospho‑regulated trafficking in stomatal dynamics.
Uncovering the Molecular Regulation of Seed Development and Germination in Endangered Legume Paubrasilia echinata Through Proteomic and Polyamine Analyses
Authors: Vettorazzi, R. G., Carrari-Santos, R., Sousa, K. R., Oliveira, T. R., Grativol, C., Olimpio, G., Venancio, T. M., Pinto, V. B., Quintanilha-Peixoto, G., Silveira, V., Santa-Catarna, C.
The study examined seed maturation and germination in the endangered legume Paubrasilia echinata using proteomic and polyamine analyses at 4, 6, and 8 weeks post-anthesis, identifying over 2,000 proteins and linking specific polyamines to developmental stages. Mature seeds (6 weeks) showed elevated proteasome components, translation machinery, LEA proteins, and heat shock proteins, while polyamine dynamics revealed putrescine dominance in early development and spermidine/spermine association with desiccation tolerance and germination. These findings uncover dynamic molecular shifts underlying seed development and provide insights for conservation and propagation.
RNA sequencing of the halophyte Salicornia europaea revealed that combined hypoxia‑salt stress triggers a unique transcriptional response, with 16% of genes specifically altered and distinct synergistic, antagonistic, and additive effects across functional pathways. Metabolic analyses indicated enhanced sucrose and trehalose metabolism, a shift toward lactate fermentation, and increased proline synthesis, highlighting complex regulatory strategies for coping with concurrent stresses.
Trichoderma afroharzianum behaves differently with respect to the host transcriptome and microbial communities under varying iron availability in pea plants
Authors: Kabir, A. H., Thapa, A., Ara Saiful, S. A., Talukder, S. K.
The study examined how the bioinoculant Trichoderma afroharzianum T22 influences Pisum sativum growth under iron-sufficient versus iron-deficient conditions, finding pronounced benefits—enhanced photosynthesis, Fe/N accumulation, and stress‑related gene expression—only during iron deficiency. RNA‑seq revealed distinct gene expression patterns tied to symbiosis, iron transport, and redox pathways, and microbiome profiling showed T22 reshapes the root bacterial community under deficiency, suggesting context‑dependent mutualism.
In a controlled dry-down experiment, Arabis sagittata showed significantly higher recovery from drought than the endangered Arabis nemorensis, a difference that could not be traced to a single major QTL, indicating a polygenic basis. Transcriptome and small‑RNA sequencing revealed that A. sagittata mounts a stronger transcriptional response, including species‑specific regulation of the conserved drought miRNA miR408, and machine‑learning identified distinct cis‑regulatory motif patterns underlying these divergent stress‑response networks.