Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 19 Papers

A CRISPR/Cas9-induced restoration of bioluminescence reporter system for single-cell gene expression analysis in plants

Authors: Ueno, R., Ito, S., Oyama, T.

Date: 2025-05-30 · Version: 1
DOI: 10.1101/2025.05.27.656507

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study introduces a CRISPR/Cas9‑based restoration system (CiRBS) that reactivates a disabled luciferase reporter (LUC40Ins26bp) in transgenic Arabidopsis, enabling long‑term single‑cell bioluminescence monitoring. Restoration occurs within 24 h after particle‑bombardment‑mediated CRISPR delivery, with ~7 % of cells regaining luminescence and most restored cells carrying a single correctly edited chromosome, facilitating reliable analysis of cellular gene‑expression heterogeneity.

CRISPR/Cas9 bioluminescence reporter particle bombardment single‑cell gene expression Arabidopsis thaliana

MLO-mediated Ca2+ influx regulates root hair tip growth in Arabidopsis

Authors: Ogawa, S. T., Zhang, W., Staiger, C. J., Kessler, S. A.

Date: 2025-04-10 · Version: 1
DOI: 10.1101/2025.04.08.647801

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that constitutively active MLO (faNTA) can rescue the fer-4 root‑hair bursting and polarity defects, restoring tip‑focused cytosolic Ca2+ oscillations and ROS accumulation, highlighting a FERONIA‑MLO signaling module that governs Ca2+ influx and ROS production during root‑hair tip growth. Genetic analysis of mlo15-4 further confirms MLO15 as a key regulator of these Ca2+ and ROS dynamics. The findings suggest MLO proteins act downstream of FER to coordinate calcium and ROS signals essential for root‑hair integrity.

root hair tip growth calcium signaling reactive oxygen species FERONIA receptor kinase MLO proteins

ROS regulation of stigma papillae growth and maturation in Arabidopsis thaliana

Authors: Sankaranarayanan, S., Venkatesan, S. D., Davis, T. C., Kessler, S. A.

Date: 2025-04-10 · Version: 1
DOI: 10.1101/2025.04.08.647846

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that reactive oxygen species (ROS) have distinct temporal roles in Arabidopsis thaliana stigma papillae development, with superoxide promoting early growth and hydrogen peroxide marking mature, pollen‑receptive papillae. Pharmacological reduction of superoxide or transgenic over‑expression of superoxide dismutase under an early stigma promoter impairs papillae growth, highlighting ROS homeostasis as essential for proper papillae differentiation and successful pollination.

stigma papillae reactive oxygen species Arabidopsis thaliana superoxide pollen reception

Loss-of-function of the drought-induced genes GASA3 and AFP1 confers enhanced drought tolerance in Arabidopsis thaliana

Authors: Bhattacharyya, S., Turysbek, B., Lorenz, S. D., Rosales, D. C., Shoaib, Y., Gutbrod, K., Doermann, P., Chigri, F., Vothknecht, U. C.

Date: 2025-04-06 · Version: 1
DOI: 10.1101/2025.04.03.647048

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Loss‑of‑function mutations in the drought‑induced genes GASA3 and AFP1 confer enhanced drought tolerance in Arabidopsis thaliana, primarily through smaller stomatal apertures and increased ABA accumulation via hydrolysis of ABA‑GE. Constitutive overexpression of these genes heightens drought sensitivity, indicating that the AFP1/GASA3 module negatively regulates stomatal closure and ABA signaling.

drought tolerance GASA3 AFP1 abscisic acid (ABA) stomatal aperture

HISTONE DEACETYLASE COMPLEX 1 modulates sepal length through the ethylene-ROS module

Authors: Xiang, D., Qiu, D., Zhang, R., He, X., Xu, S., Zhou, M., Hong, L.

Date: 2025-03-31 · Version: 1
DOI: 10.1101/2025.03.27.645679

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies HISTONE DEACETYLASE COMPLEX 1 (HDC1) as a positive regulator of sepal size during maturation in Arabidopsis thaliana, showing that hdc1 mutants exhibit prolonged elongation due to delayed maturation. Integrated transcriptomic and proteomic analyses, together with genetic and chemical experiments, reveal that HDC1 promotes ethylene production, which in turn triggers ROS accumulation to terminate sepal growth. These findings elucidate a coordinated ethylene‑ROS signaling mechanism controlling organ size during plant development.

HISTONE DEACETYLASE COMPLEX 1 sepal size regulation ethylene signaling reactive oxygen species Arabidopsis thaliana

Antioxidant properties of dihydroxy B-ring flavonoids modulate circadian amplitude in Arabidopsis

Authors: Littleton, E. S., Hildreth, S. B., Kojima, S., Winkel, B. S. J.

Date: 2025-03-13 · Version: 1
DOI: 10.1101/2025.03.09.641856

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that dihydroxy B‑ring flavonoids modulate the amplitude of the core circadian clock gene reporter TOC1:LUC in Arabidopsis by affecting cellular H2O2 levels, rather than auxin transport. Reducing reactive oxygen species restored normal TOC1:LUC amplitude in flavonoid‑deficient seedlings, and altered chloroplast Ca2+ levels suggest a retrograde signaling component.

flavonoids circadian clock reactive oxygen species TOC1:LUC reporter chloroplast calcium signaling

Production of homozygous deletion mutants targeting fertilization regulator genes through multiplex genome editing

Authors: Yoshimura, A., Seo, Y., Kobayashi, S., Igawa, T.

Date: 2025-03-06 · Version: 1
DOI: 10.1101/2025.02.28.640930

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study applied a CRISPR/Cas9 multiplex guide RNA strategy to delete entire open reading frames of four reproductive genes in Arabidopsis thaliana, achieving homozygous deletions already in the T1 generation with rates of 8.3–30%. Deletion efficiencies correlated with DeepSpCas9 prediction scores, and phenotypic analyses revealed unexpected effects of residual gene fragments on fertilization and seed development.

CRISPR/Cas9 multiplex guide RNAs gene knockout Arabidopsis thaliana fertilization regulators

Protein and genetic interactions between RACK1A and FSD1 modulate plant development and stress granule-dependent response to salt in Arabidopsis.

Authors: Melicher, P., Dvorak, P., Tsinyk, M., Rehak, J., Samajova, O., Hlavackova, K., Ovecka, M., Samaj, J., Takac, T.

Date: 2025-02-25 · Version: 1
DOI: 10.1101/2025.02.25.640159

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the scaffolding protein RACK1A as a cytoplasmic interaction partner of the antioxidant enzyme FSD1, revealing that RACK1A recruits FSD1 to cycloheximide-sensitive condensates that colocalize with stress granules during salt stress. Functional analyses show that this RACK1A‑FSD1 module modulates ROS levels, influences root hair tip growth, and determines salt‑stress resilience in Arabidopsis.

reactive oxygen species salt stress RACK1A-FSD1 interaction stress granules Arabidopsis

Hydrogen Sulfide modulates Flagellin-Induced Stomatal Immunity

Authors: Scuffi, D., Pantaleno, R., Schiel, P., Peer Niemeier, J.-O., Costa, A., Schwarzländer, M., Laxalt, A., Garcia Mata, C.

Date: 2025-02-19 · Version: 1
DOI: 10.1101/2025.02.14.638267

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that hydrogen sulfide (H₂S) and the cysteine desulfhydrase DES1 are essential for stomatal immunity, mediating flg22‑ and bacterial‑induced stomatal closure and influencing reactive oxygen species (ROS) dynamics. Loss‑of‑function des1 mutants show altered susceptibility to Pseudomonas syringae and reduced apoplastic and cytosolic H₂O₂ accumulation, while H₂S can induce ROS production independently of RBOHD.

hydrogen sulfide DES1 stomatal immunity flg22 reactive oxygen species
Previous Page 2 of 2