Latest 6 Papers

Proline transporters balance the salicylic acid-mediated trade-off between regeneration and immunity in plants

Authors: Yang, L., Xu, D., Belew, Z. M., Cassia Ferreira Dias, N., Wang, L., Zhang, A., Chen, Y.-F. S., Newton, C. J., Kong, F., Zheng, Y., Yao, Y., Brewer, M. T., Teixeira, P. J. P. L., Nour-Eldin, H. H., Xu, D.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689487

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study identifies wound‑induced proline transporters ProT2 and ProT3 as central regulators that link salicylic acid signaling to the suppression of de novo root regeneration (DNRR) via modulation of reactive oxygen species dynamics. Genetic loss of these transporters or pharmacological inhibition of proline transport alleviates SA‑mediated regeneration inhibition across several plant species without compromising disease resistance.

salicylic acid proline transporters de novo root regeneration reactive oxygen species immunity‑regeneration trade‑off

Rubisco Dark Inhibition in Angiosperms Shows a Complex Distribution Pattern

Authors: Nehls-Ramos, C., Carmo-Silva, E., Orr, D. J.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689527

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.

Rubisco dark inhibition flowering plants phylogenetic analysis photosynthetic regulation CO2-fixing enzyme

A plant-centric investigation of Class B Flavin-dependent Monooxygenase evolution and structural diversity

Authors: Christensen, J. M., Neilson, E. H.

Date: 2025-09-16 · Version: 1
DOI: 10.1101/2025.09.16.676513

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study presents a plant‑focused phylogenetic analysis of class B flavin‑dependent monooxygenases, identifying eight distinct families and revealing lineage‑specific diversification, especially in the NADPH‑binding domain. Using known FMOs as baits, they assembled flavin‑related proteins from key Viridiplantae lineages, performed domain architecture and motif analyses, and reclassified several families, providing a framework for future functional studies.

Class B flavin-dependent monooxygenases phylogenetic analysis Viridiplantae domain architecture motif analysis

The secreted redox sensor roGFP2-Orp1 reveals oxidative dynamics in the plant apoplast

Authors: Ingelfinger, J., Zander, L., Seitz, P. L., Trentmann, O., Tiedemann, S., Sprunck, S., Dresselhaus, T., Meyer, A. J., Müller-Schüssele, S. J.

Date: 2025-07-09 · Version: 2
DOI: 10.1101/2025.01.10.632316

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study evaluated the genetically encoded redox biosensor roGFP2-Orp1 for monitoring extracellular redox dynamics in diverse land plants, revealing that re‑oxidation rates in the apoplast differ between Physcomitrium patens and Arabidopsis thaliana and are accelerated by immune activation. Comparisons across tip‑growing cells showed no intracellular redox gradient but a partially reduced extracellular sensor in Nicotiana tabacum pollen tubes, indicating species‑ and cell‑type‑specific oxidative processes.

reactive oxygen species apoplastic redox dynamics roGFP2-Orp1 biosensor immune signaling plant model species

Exploring phenotypic and genetic variation in Lactuca with GWAS in L. sativa and L. serriola

Authors: Mehrem, S. L., Van den Ackerveken, G., Snoek, B. L.

Date: 2025-07-01 · Version: 1
DOI: 10.1101/2025.06.27.661939

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study generated a phenotypic dataset for 550 Lactuca accessions, including 20 wild relatives, and applied an iterative two‑step GWAS using a jointly processed SNP set for cultivated lettuce (L. sativa) and its wild progenitor (L. serriola) to dissect trait loci. Known and novel QTLs for anthocyanin accumulation, leaf morphology, and pathogen resistance were identified, with several L. serriola‑specific QTLs revealing unique genetic architectures, underscoring the breeding value of wild lettuce species.

Lactuca wild relatives anthocyanin accumulation leaf morphology pathogen resistance GWAS

The auxin gatekeepers: Evolution and diversification of the YUCCA family

Authors: Vijayanathan, M., Faryad, A., Abeywickrama, T. D., Christensen, J. M., Neilson, E. H.

Date: 2025-04-14 · Version: 1
DOI: 10.1101/2025.04.11.648386

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors conducted a comprehensive phylogenetic and sequence analysis of the conserved YUCCA (YUC) gene family across representative plant lineages, classifying the family into six major classes and 41 subclasses. They linked YUC diversification to protein sequence conservation and spatial/temporal gene expression patterns, providing a framework for future functional investigations of auxin biosynthesis.

YUCCA gene family indole-3-acetic acid phylogenetic analysis gene family diversification auxin biosynthesis