Phosphoproteomics uncovers rapid and specific transition from plant two-component system signaling to Ser/Thr phosphorylation by the intracellular redox sensor AHK5
Authors: Drechsler, T., Li, Z., Schulze, W. X., Harter, K. J. W.
Category: Plant Biology
Model Organism: Arabidopsis thaliana
▶ AI Summary
A comparative phosphoproteomics study using Arabidopsis thaliana ahk5 loss‑of‑function mutants and wild‑type seedlings revealed that the histidine kinase AHK5 mediates a rapid shift from multistep phosphorelay signaling to serine/threonine phosphorylation in response to H2O2. AHK5 controls ROS‑responsive phosphorylation of plasma‑membrane nanodomain proteins and orchestrates distinct ABA‑independent stomatal closure and ABA‑dependent root development pathways by modulating key components such as RBOHD, CAS, HPCA1, and auxin transporters.