Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 1 Paper

High-resolution transcriptional atlas of growing maize shoot organs throughout plant development under well-watered and drought conditions

Authors: Zhang, J., Verbraeken, L., Sprenger, H., Mertens, S., Wuyts, N., Cannoot, B., De Block, J., Demuynck, K., Natran, A., Maleux, K., Merchie, J., Crafts-Brandner, S., Vogel, J., Bruce, W., Inze, D., Maere, S., Nelissen, H.

Date: 2025-03-13 · Version: 1
DOI: 10.1101/2025.03.12.642568

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study mapped the macroscopic and cellular development of maize leaves and internodes, revealing a shared growth design with organ‑specific timing. Using high‑resolution spatiotemporal transcriptome profiling of 272 tissue samples under well‑watered and drought conditions, the authors generated a searchable expression atlas and identified conserved and organ‑specific gene regulatory patterns, including genes linked to leaf angle and vascular development. This resource advances understanding of shoot organ development and drought response for targeted trait engineering in maize.

Zea mays leaf and internode development drought stress spatiotemporal transcriptome atlas gene regulatory networks