Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 2 Papers

Additive and partially dominant effects from genomic variation contribute to rice heterosis

Authors: Dan, Z., Chen, Y., Zhou, W., Xu, Y., Huang, J., Chen, Y., Meng, J., Yao, G., Huang, W.

Date: 2025-10-17 · Version: 4
DOI: 10.1101/2024.07.16.603817

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study systematically identified heterosis-associated genes and metabolites in rice, functionally validated three genes influencing seedling length, and integrated these molecules into network modules to explain heterosis variance. Predominant additive and partially dominant inheritance patterns were linked to parental genomic variants and were shown to affect 17 agronomic traits in rice, as well as yield heterosis in maize and biomass heterosis in Arabidopsis. The work highlights the quantitative contribution of transcriptomic and metabolomic variation, especially in phenylpropanoid biosynthesis, to hybrid vigor.

heterosis Oryza sativa additive and partially dominant effects metabolomics phenylpropanoid biosynthesis

Ubiquitin-like SUMO protease expansion in rice (Oryza sativa)

Authors: Sue-ob, K., Zhang, C., Sharma, E., Bhosale, R., Sadanandom, A., Jones, A. R.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.20.671006

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study employed computational approaches to characterize the SUMOylation (ULP) machinery in Asian rice (Oryza sativa), analyzing phylogenetic relationships, transcriptional patterns, and protein structures across the reference genome, a population panel, and wild relatives. Findings reveal an expansion of ULP genes in cultivated rice, suggesting selection pressure during breeding and implicating specific ULPs in biotic and abiotic stress responses, providing resources for rice improvement.

SUMOylation ULP proteases Oryza sativa phylogenetic analysis stress response