Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 28 Papers

CRK5 preserves antioxidant homeostasis and prevents cell death during dark-induced senescence through inhibiting the salicylic acid signaling pathway

Authors: Kamran, M., Burdiak, P., Rusaczonek, A., Zarrin Ghalami, R., Karpinski, S.

Date: 2026-01-12 · Version: 1
DOI: 10.64898/2026.01.12.698963

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the cysteine‑rich receptor‑like kinase CRK5 as a negative regulator of salicylic‑acid‑mediated cell death and a positive regulator of antioxidant homeostasis during dark‑induced leaf senescence in Arabidopsis. Loss‑of‑function crk5 mutants display accelerated senescence, elevated ROS and electrolyte leakage, and altered antioxidant enzyme activities, phenotypes that are rescued by suppressing SA biosynthesis or catabolism. Transcriptome analysis reveals extensive deregulation of senescence‑ and redox‑related genes, highlighting CRK5’s central role in coordinating hormonal and oxidative pathways.

dark-induced senescence salicylic acid signaling CRK5 receptor kinase reactive oxygen species antioxidant homeostasis

A chloroplast-localized protein AT4G33780 regulates Arabidopsis development and stress-associated responses

Authors: Yang, Z.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697459

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.

AT4G33780 chloroplast regulator Arabidopsis thaliana transcriptomics metabolomics

Identification of a putative RBOHD-FERONIA-CRK10-PIP2;6 plasma membrane complex that interacts with phyB to regulate ROS production in Arabidopsis thaliana

Authors: Mohanty, D., Fichman, Y., Pelaez-Vico, M. A., Myers, R. J., Sealander, M., Sinha, R., Morrow, J., Eckstein, R., Olson, K., Xu, C., An, H., Yoo, C. Y., Zhu, J.-K., Zhao, C., Zandalinas, S. I., Liscum, E., Mittler, R.

Date: 2025-11-26 · Version: 1
DOI: 10.1101/2025.11.23.689998

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that FERONIA and phytochrome B physically interact with the NADPH oxidase RBOHD, and that FERONIA-mediated phosphorylation of phyB is essential for RBOHD-driven ROS production under excess light stress in Arabidopsis thaliana. Additional membrane proteins CRK10 and PIP2;6 also associate with this complex, forming a plasma‑membrane assembly that integrates multiple signaling pathways to regulate stress‑induced ROS.

reactive oxygen species FERONIA phytochrome B RBOHD excess light stress

Enterobacter sp. SA187-induced coordinated regulation of high-affinity nitrate transporters and ethylene signaling enhances nitrogen content and plant growth under low nitrate

Authors: Ilyas, A., Mauve, C., Decouard, B., Caius, J., Paysant-Leroux, C., Hodges, M., de Zelicourt, A.

Date: 2025-10-26 · Version: 2
DOI: 10.1101/2025.06.23.660384

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study shows that inoculation with the non‑diazotrophic bacterium Enterobacter sp. SA187 significantly improves Arabidopsis thaliana growth under low nitrate conditions by increasing fresh weight, primary root length, and lateral root density, while enhancing nitrate accumulation and reducing shoot C:N ratios. Transcriptomic and mutant analyses reveal that these benefits depend on ethylene signaling and the activity of high‑affinity nitrate transporters NRT2.5 and NRT2.6, indicating an ethylene‑mediated, HATS‑dependent reprogramming of nitrogen uptake.

Enterobacter sp. SA187 low nitrate nutrition ethylene signaling high-affinity nitrate transporters plant‑growth‑promoting bacteria

Role of AtCPK5 and AtCPK6 in the regulation of the plant immune response triggered by rhamnolipids in Arabidopsis

Authors: STANEK, J., FERNANDEZ, O., BOUDSOCQ, M., AGGAD, D., VILLAUME, S., PARENT, L., DHONDT CORDELIER, S., CROUZET, J., DOREY, S., CORDELIER, S.

Date: 2025-10-23 · Version: 1
DOI: 10.1101/2025.10.22.683368

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study examined how Arabidopsis calcium‑dependent protein kinases AtCPK5 and AtCPK6 modulate immunity triggered by bacterial rhamnolipids, finding that RLs up‑regulate these kinases and that mutants, especially cpk5/6, show altered reactive oxygen species production and defense gene expression. However, these kinases did not influence RL‑induced electrolyte leakage or resistance to Pseudomonas syringae pv. tomato DC3000, indicating additional signaling components are involved.

rhamnolipids calcium dependent protein kinases Arabidopsis thaliana immunity reactive oxygen species defense gene expression

Ethylene receptors are functionally conserved in calcium permeability across the green lineage

Authors: Yu, D., Ju, C., Feng, C., Wang, Y., Sun, Y., Gao, L., Liu, Z., Li, C., Wang, Y., He, X., Su, H., Hu, M., Meng, J., Tian, S., Liu, L., Hou, C., Kong, D., Li, L.

Date: 2025-10-20 · Version: 1
DOI: 10.1101/2025.10.20.683334

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that Arabidopsis ethylene receptors ETR1 and ERS1 function as Ca²⁺-permeable channels, with ETR1 specifically mediating ethylene‑induced cytosolic Ca²⁺ spikes that influence hypocotyl elongation. Homologous receptors from diverse land plants and algae also show Ca²⁺ permeability, and ethylene further enhances this activity, indicating a conserved regulatory role across the green lineage.

ethylene signaling Ca2+ permeability ETR1 receptor Arabidopsis thaliana conserved plant signaling

Phosphoproteomics uncovers rapid and specific transition from plant two-component system signaling to Ser/Thr phosphorylation by the intracellular redox sensor AHK5

Authors: Drechsler, T., Li, Z., Schulze, W. X., Harter, K. J. W.

Date: 2025-10-14 · Version: 1
DOI: 10.1101/2025.10.13.682113

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

A comparative phosphoproteomics study using Arabidopsis thaliana ahk5 loss‑of‑function mutants and wild‑type seedlings revealed that the histidine kinase AHK5 mediates a rapid shift from multistep phosphorelay signaling to serine/threonine phosphorylation in response to H2O2. AHK5 controls ROS‑responsive phosphorylation of plasma‑membrane nanodomain proteins and orchestrates distinct ABA‑independent stomatal closure and ABA‑dependent root development pathways by modulating key components such as RBOHD, CAS, HPCA1, and auxin transporters.

AHK5 reactive oxygen species phosphoproteomics Arabidopsis thaliana nanodomain signaling

Type one protein phosphatases (TOPPs) catalyze EIN2 dephosphorylation to regulate ethylene signaling in Arabidopsis

Authors: Su, M., Qin, Q., Zhang, J., Li, Y., Ye, A., Wang, S., Hou, S.

Date: 2025-09-29 · Version: 1
DOI: 10.1101/2025.09.26.678716

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study uncovers a reciprocal regulatory loop between type one protein phosphatases (TOPPs) and EIN2 in ethylene signaling, showing that ethylene induces TOPPs expression and that TOPPs dephosphorylate EIN2 at S655 to stabilize it and promote nuclear accumulation. TOPPs act upstream of EIN2, while EIN3/EIL1 transcriptionally activates TOPPs, linking dephosphorylation to enhanced ethylene responses and improved salt tolerance.

TOPPs EIN2 ethylene signaling dephosphorylation salt tolerance

DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana

Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.

Date: 2025-08-26 · Version: 1
DOI: 10.1101/2025.08.21.671646

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.

heterosis DNA methylation DDM1 Arabidopsis thaliana transcriptomics

A sublethal drought and rewatering time course reveals intricate patterning of responses in the annual Arabidopsis thaliana

Authors: Fitzek-Campbell, E., Psaroudakis, D., Weisshaar, B., Junker, A., Braeutigam, A.

Date: 2025-07-27 · Version: 1
DOI: 10.1101/2025.07.25.666782

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.

drought stress Arabidopsis thaliana transcriptomics high‑throughput phenotyping biomarker transcripts
Page 1 of 3 Next