Root-Suppressed Phenotype of Tomato Rs Mutant is Seemingly Related to Expression of Root-Meristem-Specific Sulfotransferases
Authors: Kumari, A., Gupta, P., Santisree, P., Pamei, I., Valluri,, S., Sharma, K., Venkateswara Rao, K., Shukla, S., Nama, S., Sreelakshmi, Y., Sharma, R.
The study characterizes a radiation‑induced root‑suppressed (Rs) mutant in tomato that displays dwarfism and pleiotropic defects in leaves, flowers, and fruits. Metabolite profiling and rescue with H2S donors implicate disrupted sulfur metabolism, and whole‑genome sequencing identifies promoter mutations in two root‑meristem‑specific sulfotransferase genes as likely contributors to the root phenotype.
An ancient alkalinization factor informs Arabidopsis root development
Authors: Xhelilaj, K., von Arx, M., Biermann, D., Parvanov, A., Faiss, N., Monte, I., Klingelhuber, F., Zipfel, C., Timmermans, M., Oecking, C., Gronnier, J.
The study identifies members of the REMORIN protein family as inhibitors of plasma membrane H⁺‑ATPases, leading to extracellular pH alkalinization that modulates cell surface processes such as steroid hormone signaling and coordinates root developmental transitions in Arabidopsis thaliana. This inhibition represents an ancient mechanism predating root evolution, suggesting that extracellular pH patterning has shaped plant morphogenesis.
The study used paired whole‑genome bisulphite sequencing and RNA‑seq on wheat landraces to investigate how DNA methylation patterns change during drought stress, revealing antagonistic trends across cytosine contexts and a key demethylation role for ROS1a family members. Gene‑body methylation correlated positively with expression but negatively with stress‑responsive changes, while drought‑induced hyper‑methylation of specific transposable elements, especially the RLX_famc9 LTR retrotransposon, appears to modulate downstream gene regulation via siRNA precursors.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study integrated 16 Arabidopsis thaliana whole‑genome bisulfite sequencing datasets from 13 stress experiments using a unified bioinformatic pipeline to map common and stress‑specific DNA methylation changes. Differentially methylated regions varied by stress type and methylation context, with CG DMRs enriched in gene bodies and CHG/CHH DMRs in transposable elements, some of which overlapped loci prone to stable epimutations. Gene ontology and TE enrichment analyses highlighted shared stress pathways and suggest environmental stress can generate heritable epigenetic variation.
High-quality PacBio HiFi draft genome assemblies were generated for three Bouteloua species (B. curtipendula, B. gracilis, B. eriopoda) with >98.5% BUSCO completeness. Gene prediction with Helixer produced inflated gene counts likely reflecting polyploidy and fragmented predictions, and panEDTA identified 25–40% transposable-element content dominated by LTR retrotransposons. These assemblies provide foundational references for comparative genomics within PACMAD grasses.
The study adapted high‑throughput transposable‑element sequencing and introduced the deNOVOEnrich pipeline to map somatic TE insertions in Arabidopsis thaliana, uncovering ~200,000 new events across wild‑type and epigenetic mutant lines. Somatic integration is non‑random and TE‑specific, with families like ONSEN, EVADE, and AtCOPIA21 preferentially targeting chromosomal arms, genic regions, and chromatin marked by H2A.Z, H3K27me3, and H3K4me1, especially near environmentally‑responsive genes such as resistance loci and biosynthetic clusters.
The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.
Revisiting the Central Dogma: the distinct roles of genome, methylation, transcription, and translation on protein expression in Arabidopsis thaliana
Authors: Zhong, Z., Bailey, M., Kim, Y.-I., Pesaran-Afsharyan, N., Parker, B., Arathoon, L., Li, X., Rundle, C. A., Behrens, A., Nedialkova, D. D., Slavov, G., Hassani-Pak, K., Lilley, K. S., Theodoulou, F. L., Mott, R.
The study combined long‑read whole‑genome assembly, multi‑omics profiling (DNA methylation, mRNA, ribosome‑associated transcripts, tRNA abundance, and protein levels) in two Arabidopsis thaliana accessions to evaluate how genomic information propagates through the Central Dogma. Codon usage in gene sequences emerged as the strongest predictor of both mRNA and protein abundance, while methylation, tRNA levels, and ribosome‑associated transcripts contributed little additional information under stable conditions.
The study investigated how Arabidopsis thaliana SR protein kinases (AtSRPKs) regulate alternative RNA splicing by using chemical inhibitors of SRPK activity. Inhibition with SPHINX31 and SRPIN340 caused reduced root growth and loss of root hairs, accompanied by widespread changes in splicing and phosphorylation of genes linked to root development and other cellular processes. Multi‑omics analysis (transcriptomics and phosphoproteomics) revealed that AtSRPKs modulate diverse splicing factors and affect the splicing landscape of numerous pathways.