Root-Suppressed Phenotype of Tomato Rs Mutant is Seemingly Related to Expression of Root-Meristem-Specific Sulfotransferases
Authors: Kumari, A., Gupta, P., Santisree, P., Pamei, I., Valluri,, S., Sharma, K., Venkateswara Rao, K., Shukla, S., Nama, S., Sreelakshmi, Y., Sharma, R.
The study characterizes a radiation‑induced root‑suppressed (Rs) mutant in tomato that displays dwarfism and pleiotropic defects in leaves, flowers, and fruits. Metabolite profiling and rescue with H2S donors implicate disrupted sulfur metabolism, and whole‑genome sequencing identifies promoter mutations in two root‑meristem‑specific sulfotransferase genes as likely contributors to the root phenotype.
An ancient alkalinization factor informs Arabidopsis root development
Authors: Xhelilaj, K., von Arx, M., Biermann, D., Parvanov, A., Faiss, N., Monte, I., Klingelhuber, F., Zipfel, C., Timmermans, M., Oecking, C., Gronnier, J.
The study identifies members of the REMORIN protein family as inhibitors of plasma membrane H⁺‑ATPases, leading to extracellular pH alkalinization that modulates cell surface processes such as steroid hormone signaling and coordinates root developmental transitions in Arabidopsis thaliana. This inhibition represents an ancient mechanism predating root evolution, suggesting that extracellular pH patterning has shaped plant morphogenesis.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
Root growth promotion by Penicillium melinii: mechanistic insights and agricultural applications
Authors: Gutierrez-Manso, L., Devesa-Aranguren, I., Conesa, C. M., Monteoliva-Garcia, G., Gonzalez-Sayer, S., Lozano-Enguita, A., Blasio, F., Ugena, L., Nolasco, J., Vazquez-Mora, A., Levy, C. C. B., Ariel Otero, E., Fernandez-Calvo, P., Moreno-Risueno, M. A., petrik, I., Pencik, A., Reguera, M., Gonzalez-Bodi, S., Huerta-Cepas, J., Sacristan, S., del Pozo, J. C., Cabrera, J.
The study characterizes the endophytic fungus Penicillium melinii, isolated from Arabidopsis thaliana roots, as a plant‑growth‑promoting agent that enhances root architecture and biomass across Arabidopsis, quinoa, and tomato. Integrated phenotypic, transcriptomic, and hormonal analyses reveal that the fungus stimulates auxin‑related pathways and modest stress responses, leading to increased tomato yield in field trials, underscoring its value as a model for root development and a sustainable biostimulant.
Semi-automated image analysis of root architecture and early root development in faba bean and white clover and genomic estimation of breeding values and correlations
Authors: Nagy, I., Kristensen, P. S., Malinowska, M., Nielsen, L. K., Schiemann, A., Rolund, N., Andersen, S. U., Asp, T.
The study evaluated early root development of faba bean and white clover genotypes using greenhouse rhizobox experiments and a semi‑automated image‑based root phenotyping pipeline. It proposes a workflow linking root traits to multivariate genetic models for genomic estimation of breeding values and ties greenhouse observations to field yield performance, aiming to accelerate breeding of climate‑resilient protein crops for Northern Europe.
Compartmentalized above- and belowground defenses in Tanacetum vulgare are tailored to localized antagonists
Authors: Newrzella, H., Heinen, R., Villasante, C. M., Zimmer, I., Weber, B., Kary, P., Gerl, G., Neuhaus, A., Sigalas, A., Ojeda-Prieto, L., Winkler, J. B., Weisser, W., Schnitzler, J.-P.
Using high‑throughput root phenotyping and targeted terpenoid profiling, the study examined three leaf chemotypes of Tanacetum vulgare and their responses to wireworm (Agriotes spp.) and aphid (Macrosiphoniella tanacetaria) herbivory. Wireworms induced large increases in root sesquiterpenoids in two chemotypes, while aphids boosted leaf monoterpenoid emissions only in chemotype 1, revealing chemotype‑specific, compartmentalized defense strategies linked to distinct root system architectures.
Evaluation of combined root exudate and rhizosphere microbiota sampling approaches to elucidate plant-soil-microbe interaction
Authors: Escudero-Martinez, C., Browne, E. Y., Schwalm, H., Santangeli, M., Brown, M., Brown, L., Roberts, D. M., Duff, A. M., Morris, J., Hedley, P. E., Thorpe, P., Abbott, J. C., Brennan, F., Bulgarelli, D., George, T. S., Oburger, E.
The study benchmarked several sampling approaches for simultaneous profiling of root exudates and rhizosphere microbiota in soil-grown barley, revealing consistent exudate chemistry across methods but variation in root morphology and nitrogen exudation. High‑throughput amplicon sequencing and quantitative PCR showed protocol‑specific impacts on microbial composition, yet most rhizosphere-enriched microbes were captured by all approaches. The authors conclude that different protocols provide comparable integrated data, though methodological differences must be aligned with experimental objectives.
The study investigates how volatile organic compounds (VOCs) emitted by the fungi Laccaria bicolor, Hebeloma cylindrosporum, and Serendipita indica affect root architecture and meristem regulation in Arabidopsis thaliana and Populus tremuloides. Results show that these fungal VOCs alter root morphology in both species and modulate the expression of the stem‑cell regulator WOX5, highlighting a role for VOC‑mediated signaling in maintaining root meristem homeostasis.
In durum wheat cultivar mixtures, susceptibility to Septoria foliar disease is increased due to a delayed induction of defense-related genes and metabolites compared with pure stands. This delay appears to be triggered by contrasting root architectures that promote early resource competition, suggesting a root-mediated signaling cascade that modulates aerial pathogen resistance.
The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.