The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study examined how white lupin (Lupinus albus) cotyledons mobilize nitrogen and minerals during early seedling growth under nitrogen‑deficient conditions, revealing that 60 % of stored proteins degrade within eight days and are redirected to support development. Proteomic analyses showed dynamic shifts in nutrient transport, amino acid metabolism, and stress responses, and premature cotyledon removal markedly impaired growth, highlighting the cotyledon's essential role in nutrient supply and transient photosynthetic activity.
The study characterizes the protein composition of extracellular vesicles (EVs) secreted by the oomycete Phytophthora infestans, revealing enrichment of transmembrane proteins and RxLR effectors, while EV-independent secretions are dominated by cell wall–modifying enzymes. Two MARVEL‑domain proteins, PiMDP1 and PiMDP2, are identified as EV-associated markers that co‑localize with RxLR effectors, with PiMDP2 specifically accumulating at the haustorial interface during early infection, suggesting a role in effector delivery.
Whats left from the brew? Investigating residual barley proteins in spent grains for downstream valorization opportunities
Authors: Gregersen Echers, S., Mikkelsen, R. K., Abdul-Khalek, N., Queiroz, L. S., Hobley, T. J., Schulz, B. L., Overgaard, M. T., Jacobsen, C., Yesiltas, B.
The study provides an in‑depth proteomic characterization of brewer's spent grain (BSG) and tracks proteome dynamics during malting and mashing, revealing that 29% of identified proteins change in abundance and that B3‑Hordein dominates the BSG protein pool. BSG contains a high proportion of intracellular proteins and over 45% of its proteins are potential allergens or antinutritional factors, underscoring the need for targeted downstream processing to create safe, functional food ingredients.
The study investigated how Arabidopsis thaliana SR protein kinases (AtSRPKs) regulate alternative RNA splicing by using chemical inhibitors of SRPK activity. Inhibition with SPHINX31 and SRPIN340 caused reduced root growth and loss of root hairs, accompanied by widespread changes in splicing and phosphorylation of genes linked to root development and other cellular processes. Multi‑omics analysis (transcriptomics and phosphoproteomics) revealed that AtSRPKs modulate diverse splicing factors and affect the splicing landscape of numerous pathways.
The study investigates the role of the Arabidopsis transcription factor AtMYB93 in sulfur (S) signaling and root development, revealing that AtMYB93 mutants exhibit altered expression of S transport and metabolism genes and increased shoot S levels, while tomato plants overexpressing SlMYB93 show reduced shoot S. Transcriptomic profiling, elemental analysis, and promoter activity assays indicate that AtMYB93 contributes to root responses to S deprivation, though functional redundancy masks clear phenotypic effects on lateral and adventitious root formation.
The study investigates the Arabidopsis ribosomal protein RPS6A and its role in auxin‑related root growth, revealing that rps6a mutants display shortened primary roots, fewer lateral roots, and defective vasculature that are not rescued by exogenous auxin. Cell biological observations and global transcriptome profiling show weakened auxin signaling and reduced levels of PIN auxin transporters in the mutant, indicating a non‑canonical function of the ribosomal subunit in auxin pathways.
The study shows that silencing of NOR2 rRNA genes in Arabidopsis thaliana depends primarily on CHH-context cytosine methylation, particularly mediated by CMT2 and the chromatin remodeler DDM1, rather than CG or CHG methylation. Comparative promoter analysis revealed a prevalence of CHH sites in plant rDNA promoters, explaining why CHH methylation mutants disrupt NOR2 silencing more strongly, while NOR2 loci are hyper‑methylated and more condensed than NOR4.
The study profiled the Arabidopsis apoplastic proteome during pattern‑triggered immunity induced by the flg22 peptide, using apoplastic washing fluid with minimal cytoplasmic contamination followed by LC‑MS/MS. Results showed consistent PTI‑specific enrichment and depletion of peptides, a bias toward ectodomain peptides of receptor‑like kinases, and increased abundance of the exosome marker tetraspanin 8, indicating heightened exosome levels during PTI.