The study introduces the Botanical Spectrum Analyzer (BSA), a GUI that incorporates a modified U‑Net deep neural network for accurate segmentation of plant images from RGB and hyperspectral (VNIR and SWIR) data. BSA was tested on wheat, barley, and Arabidopsis datasets, achieving >99% accuracy and F1‑scores above 98%, and markedly outperformed commercial tools on root segmentation tasks.
Gain and loss of gene function shaped the nickel hyperaccumulation trait in Noccaea caerulescens
Authors: Belloeil, C., Garcia de la Torre, V. S., Contreras Aguilera, R., Kupper, H., Lopez-Roques, C., Iampetro, C., Vandecasteele, C., Klopp, C., Launay-Avon, A., Leemhuis, W., Yamjabok, J., van den Heuvel, J., Aarts, M. G. M., Quintela Sabaris, C., Thomine, S., MERLOT, S.
The study presents a high-quality genome assembly for the nickel hyperaccumulator Noccaea caerulescens and uses it as a reference for comparative transcriptomic analyses across different N. caerulescens accessions and the non‑accumulating relative Microthlaspi perfoliatum. It identifies a limited set of metal transporters (NcHMA3, NcHMA4, NcIREG2, and NcIRT1) whose elevated expression correlates with hyperaccumulation, and demonstrates that frameshift mutations in NcIRT1 can abolish the trait, indicating an ancient, transporter‑driven origin of nickel hyperaccumulation.
Phenotypic scoring of Canola Blackleg severity using machine learning image analysis
Authors: Hu, Q., Anderson, S. N., Gardner, S., Ernst, T. W., Koscielny, C. B., Bahia, N. S., Johnson, C. G., Jarvis, A. C., Hynek, J., Coles, N., Falak, I., Charne, D. R., Ruidiaz, M. E., Linares, J. N., Mazis, A., Stanton, D. J.
The study introduces a deep‑learning based image analysis pipeline that scores blackleg disease severity from stem cross‑section images of canola species, achieving greater consistency than median expert raters while preserving comparable heritability of susceptibility traits. This standardized scoring method aims to improve selection of resistant varieties in breeding programs.
The study presents a deep‑learning pipeline that uses state‑of‑the‑art convolutional neural networks to automatically estimate the establishment of perennial groundcovers in agricultural research plots from smartphone images. By employing region‑of‑interest markers and deploying the models on AWS SageMaker with a lightweight Django web interface, the approach provides fast, objective, and reproducible assessments that can be adopted by researchers and growers across the Midwest.
MdBRC1 and MdFT2 Interaction Fine-Tunes Bud Break Regulation in Apple
Authors: Gioppato, H. A., Estevan, J., Al Bolbol, M., Soriano, A., Garighan, J., Jeong, K., Georget, C., Soto, D. G., El Khoury, S., Falavigna, V. d. S., George, S., Perales, M., Andres, F.
The study identifies the transcription factor MdBRC1 as a key inhibitor of bud growth during the ecodormancy phase in apple (Malus domestica), directly regulating dormancy‑associated genes and interacting with the flowering promoter MdFT2 to modulate bud break. Comparative transcriptomic analysis and gain‑of‑function experiments in poplar demonstrate that MdFT2 physically binds MdBRC1, attenuating its repressive activity and acting as a molecular switch for the transition to active growth.
The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.
Unraveling the cis-regulatory code controlling abscisic acid-dependent gene expression in Arabidopsis using deep learning
Authors: Opdebeeck, H., Smet, D., Thierens, S., Minne, M., De Beukelaer, H., Zuallaert, J., Van Bel, M., Van Montagu, M., Degroeve, S., De Rybel, B., Vandepoele, K.
The study used an interpretable convolutional neural network to predict ABA responsiveness from proximal promoter sequences in Arabidopsis thaliana, revealing both known ABF-binding motifs and novel regulatory elements. Model performance was boosted by advanced data augmentation, and predicted regulatory regions were experimentally validated using reporter lines, confirming the inferred cis‑regulatory code.
The study introduced full-length SOC1 genes from maize and soybean, and a partial SOC1 gene from blueberry, into tomato plants under constitutive promoters. While VcSOC1K and ZmSOC1 accelerated flowering, all three transgenes increased fruit number per plant mainly by promoting branching, and transcriptomic profiling revealed alterations in flowering, growth, and stress‑response pathways.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
The study presents GenoRetriever, an interpretable deep learning framework trained on STRIPE-seq data from soybean and other crops, that predicts transcription start site locations and usage by identifying 27 core promoter motifs. Validation using in silico motif insertions, saturation mutagenesis, and CRISPR‑Cas9 promoter editing demonstrates high predictive accuracy and reveals domestication‑driven motif usage shifts and lineage‑specific effects. The tool is provided via a web server for promoter analysis and design, offering a new resource for plant functional genomics and crop improvement.