Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 39 Papers

Mobility-enhanced virus vectors enable meristem genome editing in model and crop plants

Authors: Chiu, K. T., Higgs, H., Antunes, M. S., Lin, Y. T., McGarry, R. C.

Date: 2025-11-19 · Version: 1
DOI: 10.1101/2025.11.19.689159

Category: Plant Biology

Model Organism: Nicotiana benthamiana

AI Summary

The study engineered Tobacco rattle virus vectors incorporating distinct RNA secondary structures as mobility factors to improve guide RNA delivery to plant meristems. Using Nicotiana benthamiana plants expressing Cas9, optimal virus constructs were identified that generated both somatic and heritable edits, and these constructs were successfully applied to edit the emerging oilseed crop pennycress (Thlaspi arvense).

CRISPR/Cas9 Tobacco rattle virus (TRV) RNA mobility factors meristem editing virus-mediated gRNA delivery

Developing a Molecular Toolkit to ENABLE all to apply CRISPR/Cas9-based Gene Editing in planta

Authors: Abate, B. A., Hahn, F., Chirivi, D., Betti, C., Fornara, F., Molloy, J. C., Krainer, K. M. C.

Date: 2025-11-09 · Version: 1
DOI: 10.1101/2025.11.09.687425

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The authors introduce the ENABLE(R) Gene Editing in planta toolkit, a streamlined two‑step cloning system for creating CRISPR/Cas9 knockout vectors suitable for transient or stable transformation. Validation was performed in Oryza sativa protoplasts and Arabidopsis thaliana plants, and the toolkit includes low‑cost protocols aimed at facilitating adoption in the Global South.

CRISPR/Cas9 plant gene editing low‑cost cloning Global South agriculture ENABLE(R) toolkit

Golden Promise-rapid, a fast-cycling barley genotype with high transformation efficiency

Authors: Buchmann, G., Haraldsson, E. B., Schüller, R., Rütjes, T., Walla, A. A., von Korff Schmising, M., Liu, S.

Date: 2025-10-31 · Version: 1
DOI: 10.1101/2025.10.31.685778

Category: Plant Biology

Model Organism: Hordeum vulgare

AI Summary

The authors created a fast‑cycling, isogenic barley line (GP‑rapid) by introgressing the wild‑type Ppd‑H1 allele from Igri into the Golden Promise cultivar and performing two backcrosses to limit the donor genome, achieving a 25% reduction in generation time under speed‑breeding conditions while retaining high transformation efficiency. CRISPR/Cas9‑mediated editing of Ppd‑H1 showed regeneration and transformation rates comparable to the original Golden Promise, establishing GP‑rapid as a rapid platform for transgenic and gene‑edited barley research.

Golden Promise Ppd-H1 speed breeding CRISPR/Cas9 transformation efficiency

Engineering compact Physalis peruviana (goldenberry) to promote its potential as a global crop

Authors: Santo Domingo, M., Fitzgerald, B., Robitaille, G. M., Ramakrishnan, S., Swartwood, K., Karavolias, N., Schatz, M., Van Eck, J., Lippman, Z.

Date: 2025-10-24 · Version: 2
DOI: 10.1101/2025.08.15.670557

Category: Plant Biology

Model Organism: Physalis peruviana

AI Summary

The study applied CRISPR/Cas9 gene editing to Physalis peruviana to modify plant‑architecture genes and create a compact growth ideotype. This compact phenotype is intended to increase per‑plot yield and support future breeding efforts for this nutritionally valuable minor crop.

Physalis peruviana Goldenberry CRISPR/Cas9 plant architecture compact ideotype

Plasmodesmal closure elicits stress responses

Authors: Tee, E., Breakspear, A., Papp, D., Thomas, H. R., Walker, C., Bellandi, A., Faulkner, C.

Date: 2025-10-17 · Version: 3
DOI: 10.1101/2024.05.08.593115

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study created transgenic Arabidopsis lines enabling inducible plasmodesmal closure via an overactive CALLOSE SYNTHASE3 allele (icals3m) and the C‑terminal domain of PDLP1, independent of pathogen signals. Induced closure triggered stress‑responsive gene expression, elevated salicylic acid levels, and enhanced resistance to Pseudomonas syringae, while also causing starch accumulation, reduced growth, and increased susceptibility to Botrytis cinerea, indicating that plasmodesmal closure itself can activate immune signaling.

plasmodesmata callose deposition salicylic acid immune response transgenic closure

Primary metabolism determines the outcome of salicylic acid-mediated immune induction

Authors: Zhang, Q., Xie, Y., Karapetyan, S., Wang, J., Mwimba, M., Yoo, H., Dong, X.

Date: 2025-10-14 · Version: 1
DOI: 10.1101/2025.10.13.682132

Category: Plant Biology

Model Organism: General

AI Summary

The study identified twenty survival of SA-induced death (ssd) mutants that are defective in starch, glucose, nitrate metabolism, and circadian regulation, leading to excessive carbohydrate accumulation and susceptibility to salicylic acid (SA)-induced death in prolonged darkness. Glucose application rescues SA‑treated plants by antagonizing oxidative stress and restoring metabolic balance, as revealed by transcriptomic analyses that link SA‑induced cell death to effector‑triggered immunity pathways.

salicylic acid circadian regulation starch and glucose metabolism oxidative stress glucose rescue

Cis-regulatory architecture downstream of FLOWERING LOCUS T underlies quantitative control of flowering

Authors: Zhou, H.-R., Doan, D. T. H., Hartwig, T., Turck, F.

Date: 2025-09-25 · Version: 1
DOI: 10.1101/2025.09.23.678055

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study used CRISPR/Cas9 to edit the downstream region of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, identifying a 2.3‑kb segment containing the Block E enhancer as crucial for normal FT expression and flowering. Fine‑scale deletions pinpointed a 63‑bp core module with CCAAT‑ and G‑boxes, and revealed a cryptic CCAAT‑box that becomes active when repositioned, highlighting the importance of local chromatin context and motif arrangement for enhancer function.

FLOWERING LOCUS T enhancer architecture cis‑regulatory logic CRISPR/Cas9 chromatin accessibility

Choosing the Best Route: Comparative Optimization of Wheat Transformation Methods for Improving Yield by Targeting TaARE1-D with CRISPR/Cas9

Authors: Tek, M. I., Budak Tek, K., Sarikaya, P., Ahmed, A. R., Fidan, H.

Date: 2025-09-12 · Version: 1
DOI: 10.1101/2025.09.11.675438

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study optimized three wheat transformation methods—immature embryo, callus, and in planta injection—by systematically adjusting Agrobacterium strain, bacterial density, acetosyringone concentration, and incubation conditions, achieving transformation efficiencies up to 66.84%. Using these protocols, CRISPR/Cas9 knockout of the negative regulator TaARE1-D produced mutants with increased grain number, spike length, grain size, and a stay‑green phenotype, demonstrating the platform’s potential to accelerate yield and stress‑tolerance improvements in wheat.

Triticum aestivum CRISPR/Cas9 Agrobacterium-mediated transformation TaARE1-D yield improvement

MBD8 is required for LDL2-mediated transcriptional repression downstream of H3K9me2 in Arabidopsis

Authors: Mori, S., Osakabe, A., Juliarni,, Tanaka, Y., Hirayama, M., Inagaki, S., Kakutani, T.

Date: 2025-08-25 · Version: 1
DOI: 10.1101/2025.08.21.671526

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the methyl‑CpG‑binding domain protein MBD8 interacts with the histone demethylase LDL2 to facilitate removal of H3K4me1 and transcriptional repression downstream of H3K9me2 in Arabidopsis. MBD8 binds GC‑poor DNA independently of cytosine methylation and stabilizes LDL2 protein levels, indicating a broader role for MBD proteins beyond methyl‑DNA recognition.

H3K9me2 LDL2 MBD8 histone demethylation Arabidopsis

tRNA-Based Polycistronic CRISPR/Cas9 System Boosts Efficiency of Multi-Gene Deletion in the Moss Physcomitrella.

Authors: Kozgunova, E.

Date: 2025-08-01 · Version: 1
DOI: 10.1101/2025.07.29.667574

Category: Plant Biology

Model Organism: Physcomitrium patens

AI Summary

The authors introduced a polycistronic tRNA‑gRNA array for CRISPR/Cas9 editing in Physcomitrium patens that doubled the frequency of large, targeted deletions compared with conventional single‑gRNA constructs. Using dual‑gRNA targeting, they achieved simultaneous deletion of two to four genes (katanin and TPX2 families) in a single transformation, reaching up to 42% efficiency per gene, though efficiency depended on gRNA pair design.

CRISPR/Cas9 polycistronic tRNA‑gRNA array large gene deletion multiplex editing Physcomitrium patens
Previous Page 2 of 4 Next