Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 30 Papers

Drought-Induced Epigenetic Memory in the cambium of Poplar Trees persists and primes future stress responses

Authors: DUPLAN, A., FENG, Y. Q., LASKAR, G., CAI, B. D., SEGURA, V., DELAUNAY, A., LE JAN, I., DAVIAUD, C., TOUMI, A., LAURANS, F., SOW, M. D., ROGIER, O., POURSAT, P., DURUFLE, H., JORGE, V., SANCHEZ, L., COCHARD, H., ALLONA, I., TOST, J., FICHOT, R., MAURY, S.

Date: 2025-10-15 · Version: 1
DOI: 10.1101/2025.10.14.681991

Category: Plant Biology

Model Organism: Populus spp.

AI Summary

The study examined short‑term and transannual drought memory in cambium tissues of two Populus genotypes and four epitypes with modified DNA‑methylation machinery, revealing persistent hormone, transcript, and methylation changes one week after stress relief. Trees previously stressed in Year 1 displayed distinct physiological and molecular responses to a second drought in Year 2, indicating long‑term memory linked to stable CG‑context DNA methylation, with genotype‑dependent differences in plasticity and stability. These findings position the cambium as a reservoir for epigenetic stress memory and suggest exploitable epigenetic variation for tree breeding under drought.

drought stress memory DNA methylation Populus cambium epigenetic priming

Primary metabolism determines the outcome of salicylic acid-mediated immune induction

Authors: Zhang, Q., Xie, Y., Karapetyan, S., Wang, J., Mwimba, M., Yoo, H., Dong, X.

Date: 2025-10-14 · Version: 1
DOI: 10.1101/2025.10.13.682132

Category: Plant Biology

Model Organism: General

AI Summary

The study identified twenty survival of SA-induced death (ssd) mutants that are defective in starch, glucose, nitrate metabolism, and circadian regulation, leading to excessive carbohydrate accumulation and susceptibility to salicylic acid (SA)-induced death in prolonged darkness. Glucose application rescues SA‑treated plants by antagonizing oxidative stress and restoring metabolic balance, as revealed by transcriptomic analyses that link SA‑induced cell death to effector‑triggered immunity pathways.

salicylic acid circadian regulation starch and glucose metabolism oxidative stress glucose rescue

Major alleles of CDCA7α shape CG-methylation in Arabidopsis thaliana

Authors: Bourguet, P., Lorkovic, Z. J., Casado, D. K., Bapteste, V., Cho, C. H., Igolkina, A., Lee, C.-R., Nordborg, M., Berger, F., Sasaki, E.

Date: 2025-09-07 · Version: 1
DOI: 10.1101/2025.09.03.673934

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Using genome‑wide association studies in Arabidopsis thaliana, the authors identified the chromatin‑associated protein CDCA7 as a trans‑regulator that specifically controls CG methylation (mCG) and TE silencing. CDCA7 and its paralog CDCA7β bind the remodeler DDM1, modulating its activity without broadly affecting non‑CG methylation or histone variant deposition, and natural variation in CDCA7 regulatory sequences correlates with local ecological adaptation.

DNA methylation CG methylation (mCG) CDCA7 DDM1 local adaptation

DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana

Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.

Date: 2025-08-26 · Version: 1
DOI: 10.1101/2025.08.21.671646

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.

heterosis DNA methylation DDM1 Arabidopsis thaliana transcriptomics

Esca Disease triggers local transcriptomic response and systemic DNA methylation changes in grapevine

Authors: Berger, M. M. J., Garcia, V., Rubio, B., Bortolami, G., Gambetta, G., Delmas, C. E. L., Gallusci, P.

Date: 2025-08-13 · Version: 1
DOI: 10.1101/2025.08.11.669596

Category: Plant Biology

Model Organism: Vitis vinifera

AI Summary

The study examined molecular responses in grapevine leaves with and without esca symptoms, using metabolite profiling, RNA‑seq and whole‑genome bisulfite sequencing. Metabolic and transcriptomic changes were confined to symptomatic leaves and linked to local DNA‑methylation alterations, while asymptomatic leaves showed distinct but overlapping methylation patterns, some present before symptoms, indicating potential epigenetic biomarkers for early disease detection.

Esca Vitis vinifera metabolite profiling RNA‑seq DNA methylation

The Arabidopsis GyraseB3 contributes to transposon silencing by promoting histone deacetylation

Authors: Gy, I., Beaubiat, S., Bouche, N.

Date: 2025-08-13 · Version: 1
DOI: 10.1101/2025.08.11.669681

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies GyrB3 as a novel nuclear factor that interacts with histone deacetylases to regulate transposable element silencing in plants, acting as a suppressor of IBM1 deficiency–induced epigenetic defects. Loss of GyrB3 reduces DNA methylation and increases H3 acetylation at TEs, demonstrating the importance of histone deacetylation for genome stability.

DNA methylation histone demethylase IBM1 GyrB3 transposable element silencing histone deacetylase HDA6

Role of methylation and siRNA on differential allelic expression in a hybrid of distantly related citrus species.

Authors: DIOP, K., Gibert, A., Llauro, C., Froelicher, Y., Hufnagel, B., Picault, N., Pontvianne, F.

Date: 2025-07-27 · Version: 1
DOI: 10.1101/2025.07.25.666733

Category: Plant Biology

Model Organism: Citrus spp.

AI Summary

The study examined gene expression, DNA methylation, and small RNA profiles in a Citrus hybrid (C. reticulata × C. australasica) using haplotype‑resolved subgenome assemblies, revealing allele‑specific expression and asymmetric CHH methylation that correlated with increased transcription and 24‑nt siRNA accumulation at promoters. This unconventional association suggests RNA‑directed DNA methylation (RdDM) can activate transcription in citrus fruit and provides a pipeline for epigenomic analysis of complex hybrids relevant to disease resistance breeding.

DNA methylation CHH methylation RNA-directed DNA methylation (RdDM) small RNAs allele-specific expression

Salicylic acid accumulation correlates with low anthocyanin production in Arabidopsis

Authors: Drs, M., Iakovenko, O., Orozco, J. S. H., Trhlinova, P. B., Markovice, V., Zarsky, V., Pecenkova, T., Janda, M.

Date: 2025-06-08 · Version: 1
DOI: 10.1101/2025.06.08.658514

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that elevated endogenous salicylic acid (SA) levels suppress anthocyanin accumulation in Arabidopsis thaliana under anthocyanin‑inducing conditions, a effect confirmed by exogenous SA applications. Microscopic analysis of the 5gt mutant further reveals that high SA reduces the abundance of anthocyanin vesicular inclusions, suggesting that SA downstream signaling, independent of NPR1, mediates this inhibition.

salicylic acid anthocyanin biosynthesis Arabidopsis thaliana pattern‑triggered immunity anthocyanin vesicular inclusions

Systematic measurements of dose-dependent responses for combinatorial treatments of SA and JA led to the development of transcriptomic biomarkers

Authors: Tomita, A., Maeda, T., Mori-Moriyama, N., Nomura, Y., Kurita, Y., Kashima, M., Betsuyaku, S., Nagano, A. J.

Date: 2025-06-01 · Version: 1
DOI: 10.1101/2025.05.29.656841

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study investigated how varying concentrations of salicylic acid (SA) and jasmonic acid (JA) together shape transcriptional responses, identifying 43 distinct expression patterns including novel combination-specific responses. A machine‑learning pipeline generated transcriptomic biomarkers that accurately estimate SA/JA response states, and these markers were validated using npr3/4 double mutants. The approach enables quantitative dissection of hormone signaling from large‑scale and single‑cell transcriptomic datasets.

salicylic acid jasmonic acid hormone crosstalk transcriptomic biomarkers Arabidopsis thaliana

Mobile immune signals potentiate salicylic acid-mediated plant immunity via WRKY38/62 transcription factors

Authors: Mason, R. O., Grey, H., Spoel, S. H.

Date: 2025-04-18 · Version: 1
DOI: 10.1101/2025.04.17.649115

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study reveals that the mobile immune signals azelaic acid (AzA) and N‑hydroxy‑pipecolic acid (NHP) differentially modulate salicylic acid (SA)–driven transcription, with NHP stabilizing the SA receptor NPR1 and dramatically enhancing SA‑mediated bacterial resistance via WRKY38/62 transcription factors. Loss of WRKY38/62 abolishes NHP’s potentiation of SA‑induced gene expression and immunity, indicating these WRKYs integrate mobile signals with SA signaling during systemic acquired resistance.

systemic acquired resistance salicylic acid N‑hydroxy‑pipecolic acid WRKY transcription factors NPR1 stability
Previous Page 2 of 3 Next