Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 39 Papers

Molecular basis of delayed leaf senescence induced by short-term treatment with low phosphate in rice

Authors: Martin-Cardoso, H., Bundo, M., Garcia-Molina, A., San Segundo, B.

Date: 2026-01-24 · Version: 1
DOI: 10.64898/2026.01.23.701354

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study demonstrates that short‑term low phosphate treatment delays leaf senescence in rice by increasing photosynthetic pigments, enhancing antioxidant enzyme activities, and reducing oxidative damage, whereas high phosphate accelerates senescence. CRISPR/Cas9 editing of MIR827 to lower Pi levels also postpones senescence, while overexpression of MIR827 or MIR399, which raises Pi, speeds it up. Transcriptomic profiling reveals coordinated changes in senescence‑associated and metabolic pathways underlying the low‑phosphate response.

phosphate deficiency leaf senescence Oryza sativa CRISPR/Cas9 transcriptomic analysis

Physiological Characterization under the Influence of Drought Stress and Salicylic Acid in Valeriana wallichii DC

Authors: Ansari, S., Patni, B., Jangpangi, D., Joshi, H. C., Bhatt, M. K., Purohit, V.

Date: 2026-01-09 · Version: 1
DOI: 10.64898/2026.01.09.698547

Category: Plant Biology

Model Organism: Valeriana wallichii

AI Summary

The study investigated the ability of foliar-applied salicylic acid (SA) to alleviate drought stress in the high‑altitude medicinal plant Valeriana wallichii by measuring physiological and biochemical responses during vegetative and flowering stages. SA at specific concentrations improved photosynthetic rates, water‑use efficiency, chlorophyll content, membrane stability, and root biomass under both severe (25% field capacity) and moderate (50% field capacity) drought conditions. These results suggest that SA treatment enhances drought tolerance and productivity in this species.

drought stress salicylic acid Valeriana wallichii photosynthetic efficiency water use efficiency

MATERNAL AUTOPHAGY CONTRIBUTES TO GRAIN YIELD IN MAIZE

Authors: Tang, J., Avin-Wittenberg, T., Vollbrecht, E., Bassham, D.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697098

Category: Plant Biology

Model Organism: Zea mays

AI Summary

The study shows that maize plants carrying autophagy-defective atg10 mutations exhibit delayed flowering and significant reductions in kernel size, weight, and number, culminating in lower grain yield. Reciprocal crossing experiments reveal that the maternal genotype, rather than the seed genotype, primarily drives the observed kernel defects, suggesting impaired nutrient remobilization from maternal tissues during seed development.

autophagy atg10 mutant maize yield maternal effect nutrient remobilization

The interplay between autophagy and the carbon/nitrogen ratio as key modulator of the auxin-dependent chloronema-caulonema developmental transition in Physcomitrium patens.

Authors: Pettinari, G., Liberatore, F., Mary, V., Theumer, M., Lascano, R., Saavedra, L. L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.28.696759

Category: Plant Biology

Model Organism: Physcomitrium patens

AI Summary

Using the bryophyte Physcomitrium patens, the study shows that loss of autophagy enhances auxin‑driven caulonemata differentiation and colony expansion under low nitrogen or imbalanced carbon/nitrogen conditions, accompanied by higher internal IAA, reduced PpPINA expression, and up‑regulated RSL transcription factors. Autophagy appears to suppress auxin‑induced differentiation during nutrient stress, acting as a hub that balances metabolic cues with hormonal signaling.

autophagy auxin signaling carbon/nitrogen ratio Physcomitrium patens caulonemata development

Comparative Evaluation of Conventional Inorganic Fertilization and Sesbania rostrata Green Manuring on Soil Properties and the Growth and Development of Oryza sativa L. Pant Basmati 1

Authors: Joshi, H. C., Patni, B., Guru, S. K., Bhatt, M. K., Singh, M.

Date: 2025-12-26 · Version: 1
DOI: 10.64898/2025.12.24.696455

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

A two‑year field trial compared conventional and organic nutrient management on the Basmati rice cultivar Pant Basmati 1, revealing that conventional fertilizer enhanced later‑stage growth and grain yield, while organic inputs increased early plant height and markedly improved soil health and harvest index in the second year. Despite some yield differences, organic management achieved comparable productivity with superior soil macro‑ and micronutrient status, water‑holding capacity, aggregate stability, and enzyme activities, supporting its sustainability as an alternative nutrient regime.

Oryza sativa organic nutrient management soil health harvest index Basmati rice

Dynamic regulation of protein homeostasis underlies acquiredthermotolerance in Arabidopsis

Authors: Bajaj, M., Allu, A. D., Rao, B. J.

Date: 2025-12-26 · Version: 3
DOI: 10.1101/2023.08.04.552042

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

Thermopriming enhances heat stress tolerance by orchestrating protein maintenance pathways: it activates the heat shock response (HSR) via HSFA1 and the unfolded protein response (UPR) while modulating autophagy to clear damaged proteins. Unprimed seedlings cannot mount these responses, leading to proteostasis collapse, protein aggregation, and death, highlighting the primacy of HSR and protein maintenance over clearance mechanisms.

thermopriming heat shock response unfolded protein response autophagy proteostasis

Salicylic acid-induced alkalinization of the apoplast requires TRANSMEMBRANE KINASE 1 and results in growth attenuation

Authors: Mueller, J., Xhelilaj, K., Guichard, M., Kaiser, S., Grossmann, G., Tenhaken, R., Gronnier, J., Scheuring, D.

Date: 2025-12-02 · Version: 1
DOI: 10.64898/2025.12.02.691772

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study demonstrates that salicylic acid (SA) restricts plant root growth through a mechanism requiring the transmembrane kinase TMK1, which leads to apoplastic alkalinization and inhibition of plasma membrane H⁺-ATPase phosphorylation. This SA effect operates independently of the auxin receptor ABP1, suggesting a novel SA-mediated pathway that balances stress responses with growth.

salicylic acid TMK1 apoplastic alkalinization plasma membrane H⁺-ATPase root growth regulation

The Pik NLR pair accumulates at the plasma membrane as a hetero-oligomeric sensor-helper immune protein complex prior to activation

Authors: Pai, H., Contreras, M. P., Salguero Linares, J., Luedke, D., Posbeyikian, A., Kourelis, J., Kamoun, S., Marchal, C.

Date: 2025-12-02 · Version: 1
DOI: 10.64898/2025.11.30.691369

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study examined the pre‑activation state of the rice NLR pair Pik‑1 (sensor) and Pik‑2 (helper) when transiently expressed in Nicotiana benthamiana leaves. Both wild‑type and engineered Pik‑1 variants constitutively associate with Pik‑2 to form ~1 MDa hetero‑oligomeric complexes that localize to the plasma membrane in the absence of effector. These results reveal that some NLRs exist as pre‑assembled membrane‑associated complexes prior to pathogen perception.

NLR oligomerization Pik-1/Pik-2 sensor‑helper pair resting state complex plasma membrane localization Oryza sativa

Proline transporters balance the salicylic acid-mediated trade-off between regeneration and immunity in plants

Authors: Yang, L., Xu, D., Belew, Z. M., Cassia Ferreira Dias, N., Wang, L., Zhang, A., Chen, Y.-F. S., Newton, C. J., Kong, F., Zheng, Y., Yao, Y., Brewer, M. T., Teixeira, P. J. P. L., Nour-Eldin, H. H., Xu, D.

Date: 2025-11-20 · Version: 1
DOI: 10.1101/2025.11.20.689487

Category: Plant Biology

Model Organism: Multi-species

AI Summary

The study identifies wound‑induced proline transporters ProT2 and ProT3 as central regulators that link salicylic acid signaling to the suppression of de novo root regeneration (DNRR) via modulation of reactive oxygen species dynamics. Genetic loss of these transporters or pharmacological inhibition of proline transport alleviates SA‑mediated regeneration inhibition across several plant species without compromising disease resistance.

salicylic acid proline transporters de novo root regeneration reactive oxygen species immunity‑regeneration trade‑off

Additive and partially dominant effects from genomic variation contribute to rice heterosis

Authors: Dan, Z., Chen, Y., Zhou, W., Xu, Y., Huang, J., Chen, Y., Meng, J., Yao, G., Huang, W.

Date: 2025-10-17 · Version: 4
DOI: 10.1101/2024.07.16.603817

Category: Plant Biology

Model Organism: Oryza sativa

AI Summary

The study systematically identified heterosis-associated genes and metabolites in rice, functionally validated three genes influencing seedling length, and integrated these molecules into network modules to explain heterosis variance. Predominant additive and partially dominant inheritance patterns were linked to parental genomic variants and were shown to affect 17 agronomic traits in rice, as well as yield heterosis in maize and biomass heterosis in Arabidopsis. The work highlights the quantitative contribution of transcriptomic and metabolomic variation, especially in phenylpropanoid biosynthesis, to hybrid vigor.

heterosis Oryza sativa additive and partially dominant effects metabolomics phenylpropanoid biosynthesis
Page 1 of 4 Next