Genetius

AI-summarized plant biology research papers from bioRxiv

View Trends

Latest 76 Papers

Transcriptional responses of Solanum lycopersicum to three distinct parasites reveal host hubs and networks underlying parasitic successes

Authors: Truch, J., Jaouannet, M., Da Rocha, M., Kulhanek-Fontanille, E., Van Ghelder, C., Rancurel, C., Migliore, O., Pere, A., Jaubert, S., Coustau, C., Galiana, E., Favery, B.

Date: 2026-01-23 · Version: 1
DOI: 10.64898/2026.01.22.701158

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study used transcriptomic profiling to compare tomato (Solanum lycopersicum) responses to three evolutionarily distant pathogens—nematodes, aphids, and oomycetes—during compatible interactions, identifying differentially expressed genes and key host hubs. Integrating public datasets and performing co‑expression and GO enrichment analyses, the authors mapped shared dysregulation clusters and employed Arabidopsis interactome data to place tomato candidates within broader networks, highlighting potential targets for multi‑pathogen resistance.

tomato pathogen compatibility transcriptomics co‑expression network Arabidopsis interactome

Root phenolics as potential drivers of preformed defenses and reduced disease susceptibility in a paradigm bread wheat mixture

Authors: Mathieu, L., Chloup, A., Marty, S., Savajols, J., Paysant-Le Roux, C., Launay-Avon, A., Martin, M.-L., Totozafy, J.-C., Perreau, F., Rochepeau, A., Rouveyrol, C., Petriacq, P., Morel, J.-B., Meteignier, L.-V., Ballini, E.

Date: 2026-01-14 · Version: 1
DOI: 10.64898/2026.01.13.699261

Category: Plant Biology

Model Organism: Triticum aestivum

AI Summary

The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.

root-mediated interactions bread wheat Septoria tritici blotch transcriptomics metabolomics

A novel pathosystem between Aeschynomene evenia and Aphanomyces euteiches reveals new immune components in quantitative legume root-rot resistance.

Authors: Baker, M., Martinez, Y., Keller, J., Sarrette, B., Pervent, M., Libourel, C., Le Ru, A., Bonhomme, M., Gough, C., Castel, B., ARRIGHI, J.-F., Jacquet, C.

Date: 2026-01-11 · Version: 1
DOI: 10.64898/2026.01.11.698850

Category: Plant Biology

Model Organism: Aeschynomene evenia

AI Summary

The study establishes Aeschynomene evenia as a new model for dissecting legume immunity against the soilborne pathogen Aphanomyces euteiches and its relationship with Nod factor-independent symbiosis. Quantitative resistance was assessed through inoculation assays, phenotypic and cytological analyses, and RNA‑seq identified thousands of differentially expressed genes, highlighting immune signaling and specialized metabolism, with mutant analysis confirming dual‑function kinases that modulate resistance. Comparative transcriptomics with Medicago truncatula revealed conserved and unique immune responses, positioning the A. evenia–A. euteiches system as a valuable platform for exploring quantitative resistance and symbiosis integration.

legume immunity Aphanomyces euteiches quantitative resistance transcriptomics Nod factor-independent symbiosis

Physiological Characterization under the Influence of Drought Stress and Salicylic Acid in Valeriana wallichii DC

Authors: Ansari, S., Patni, B., Jangpangi, D., Joshi, H. C., Bhatt, M. K., Purohit, V.

Date: 2026-01-09 · Version: 1
DOI: 10.64898/2026.01.09.698547

Category: Plant Biology

Model Organism: Valeriana wallichii

AI Summary

The study investigated the ability of foliar-applied salicylic acid (SA) to alleviate drought stress in the high‑altitude medicinal plant Valeriana wallichii by measuring physiological and biochemical responses during vegetative and flowering stages. SA at specific concentrations improved photosynthetic rates, water‑use efficiency, chlorophyll content, membrane stability, and root biomass under both severe (25% field capacity) and moderate (50% field capacity) drought conditions. These results suggest that SA treatment enhances drought tolerance and productivity in this species.

drought stress salicylic acid Valeriana wallichii photosynthetic efficiency water use efficiency

Features affecting Cas9-Induced Editing Efficiency and Patterns in Tomato: Evidence from a Large CRISPR Dataset

Authors: Cucuy, A., Ben-Tov, D., Melamed-Bessudo, C., Honig, A., Cohen, B. A., Levy, A. A.

Date: 2026-01-07 · Version: 1
DOI: 10.64898/2026.01.06.696182

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study generated a dataset of 420 sgRNAs targeting promoters, exons, and introns of 137 tomato genes in protoplasts, linking editing efficiency to chromatin accessibility, genomic context, and sequence features. Open chromatin sites showed higher editing rates, while transcriptional activity had little effect, and a subset of guides produced near‑complete editing with microhomology‑mediated deletions. Human‑trained prediction models performed poorly, highlighting the need for plant‑specific guide design tools.

CRISPR/Cas9 ATAC-seq chromatin accessibility microhomology‑mediated end joining tomato

A chloroplast-localized protein AT4G33780 regulates Arabidopsis development and stress-associated responses

Authors: Yang, Z.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697459

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study characterizes the chloroplast‑localized protein AT4G33780 in Arabidopsis thaliana using CRISPR/Cas9 knockout and overexpression lines, revealing tissue‑specific expression and context‑dependent effects on seed germination, seedling growth, vegetative development, and root responses to nickel stress. Integrated transcriptomic (RNA‑seq) and untargeted metabolomic analyses show extensive transcriptional reprogramming—especially of cell‑wall genes—and altered central energy metabolism, indicating AT4G33780 coordinates metabolic state with developmental regulation rather than controlling single pathways.

AT4G33780 chloroplast regulator Arabidopsis thaliana transcriptomics metabolomics

Root-Suppressed Phenotype of Tomato Rs Mutant is Seemingly Related to Expression of Root-Meristem-Specific Sulfotransferases

Authors: Kumari, A., Gupta, P., Santisree, P., Pamei, I., Valluri,, S., Sharma, K., Venkateswara Rao, K., Shukla, S., Nama, S., Sreelakshmi, Y., Sharma, R.

Date: 2026-01-03 · Version: 1
DOI: 10.64898/2026.01.03.697460

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study characterizes a radiation‑induced root‑suppressed (Rs) mutant in tomato that displays dwarfism and pleiotropic defects in leaves, flowers, and fruits. Metabolite profiling and rescue with H2S donors implicate disrupted sulfur metabolism, and whole‑genome sequencing identifies promoter mutations in two root‑meristem‑specific sulfotransferase genes as likely contributors to the root phenotype.

root development sulfur metabolism sulfotransferase radiation‑induced mutant tomato

NT-C2-Dependent Phosphoinositide Binding Controls PLASTID MOVEMENT IMPAIRED1 Localization and Function

Authors: Cieslak, D., Staszalek, Z., Hermanowicz, P., Łabuz, J. M., Dobrowolska, G., Sztatelman, O.

Date: 2025-12-31 · Version: 1
DOI: 10.64898/2025.12.30.697064

Category: Plant Biology

Model Organism: Arabidopsis thaliana

AI Summary

The study identifies the extended NT‑C2 domain of Plastid Movement Impaired 1 (PMI1) as the main membrane‑binding module that interacts with PI4P and PI(4,5)P2, requiring basic residues for plasma‑membrane association. Calcium binding by the NT‑C2 domain modulates its phosphoinositide preference, and cytosolic Ca2+ depletion blocks blue‑light‑induced PMI1 redistribution, indicating that both the NT‑C2 domain and adjacent intrinsically disordered regions are essential for PMI1’s role in chloroplast movement.

chloroplast movement PMI1 NT-C2 domain phosphoinositide binding calcium signaling

A Solanoeclepin A precursor functions as a new rhizosphere signaling molecule recruiting growth-promoting microbes under nitrogen deficiency

Authors: Abedini, D., Guerrieri, A., Jain, R., White, F., Koomen, J., Yang, Y., Wang, K., Kramer, G., Bouwmeester, H., Dong, L.

Date: 2025-12-29 · Version: 1
DOI: 10.64898/2025.12.29.696744

Category: Plant Biology

Model Organism: Solanum lycopersicum

AI Summary

The study shows that nitrogen deficiency markedly elevates the exudation of the triterpenoid Solanoeclepin A (SolA) from tomato roots, a process that requires non‑sterile soil and involves the rhizosphere microbiota. Transient silencing of two candidate biosynthetic genes (CYP749A19 and CYP749A20) reduced SolA levels and impaired recruitment of beneficial Massilia spp., which promote plant growth under nitrogen limitation, indicating that SolA acts as a microbe‑mediated recruitment signal that was co‑opted by cyst nematodes.

Solanoeclepin A nitrogen deficiency rhizosphere microbiome Massilia tomato

METABOLIC AND TRANSCRIPTOMIC ANALYSES IDENTIFY COORDINATED RESOURCE REALLOCATION IN RESPONSE TO PHOSPHATE SUPPLY IN HEMP

Authors: Wee Y, B., Berkowitz, O., Ng, S., Pegg, A., Whelan, J., Jost, R.

Date: 2025-12-23 · Version: 2
DOI: 10.1101/2025.09.18.677093

Category: Plant Biology

Model Organism: Cannabis sativa

AI Summary

The study examined how dual‑purpose hemp (Cannabis sativa) adjusts to different phosphate levels, showing that flower biomass is maintained unless phosphate is completely removed. Integrated physiological measurements and transcriptomic profiling revealed that phosphate is reallocated to flowers via glycolytic bypasses and organic phosphate release, while key regulatory genes followed expected patterns but did not suppress uptake at high phosphate, leading to nitrate depletion that limits growth.

Cannabis sativa phosphate nutrition transcriptomics source‑sink regulation nutrient signaling
Page 1 of 8 Next