The study employed ultra large‑scale 2D clinostats to grow tomato (Solanum lycopersicum) plants beyond the seedling stage under simulated microgravity and upright control conditions across five sequential trials. Simulated microgravity consistently affected plant growth, but the magnitude and direction of the response varied among trials, with temperature identified as a significant co‑variant; moderate heat stress surprisingly enhanced growth under simulated microgravity. These results highlight the utility of large‑scale clinostats for dissecting interactions between environmental factors and simulated microgravity in plant development.
CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds
Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.
The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.
The study investigated metabolic responses of kale (Brassica oleracea) grown under simulated microgravity using a 2-D clinostat versus normal gravity conditions. LC‑MS data were analyzed with multivariate tools such as PCA and volcano plots to identify gravity‑related metabolic adaptations and potential molecular markers for spaceflight crop health.
The study examined how white lupin (Lupinus albus) cotyledons mobilize nitrogen and minerals during early seedling growth under nitrogen‑deficient conditions, revealing that 60 % of stored proteins degrade within eight days and are redirected to support development. Proteomic analyses showed dynamic shifts in nutrient transport, amino acid metabolism, and stress responses, and premature cotyledon removal markedly impaired growth, highlighting the cotyledon's essential role in nutrient supply and transient photosynthetic activity.