The study compared aphid resistance and Barley Yellow Dwarf Virus (BYDV) transmission among three wheat varieties (G1, RGT Wolverine, RGT Illustrious). G1 emits the repellent 2‑tridecanone, restricts aphid phloem access, and shows reduced BYDV transmission, whereas RGT Wolverine limits systemic viral infection despite high transmission efficiency. The authors suggest breeding the two resistance mechanisms together for improved protection.
Introducing furanocoumarin biosynthetic genes in tomato results in coumarins accumulation and impacted growth
Authors: Bouille, A., Villard, C., Galati, G., Roumani, M., Fauvet, A., Grosjean, J., Hoengenaert, L., Boerjan, W., Ralph, J., Hilliou, F., Robin, C., Hehn, A., Larbat, R.
The study engineered the linear furanocoumarin pathway in tomato by integrating four biosynthetic genes, aiming to produce psoralen, but instead generated coumarins such as scopoletin. Morphophysiological, metabolomic, and transcriptomic analyses revealed that even low levels of these coumarins can influence plant growth and physiology, highlighting both benefits and costs of coumarin accumulation in crops.
The study investigates hormetic responses of tomato (Solanum lycopersicum) seedlings to low‑dose cadmium, demonstrating enhanced growth through morphological, biochemical, and histochemical analyses. Transcriptomic profiling revealed differential expression of oxidoreductase genes, signaling components, and several long non‑coding RNAs (lncRNAs) that generate miRNAs (sly‑MIR396a and sly‑MIR1063g), which modulate target genes to promote growth. In‑silico analyses of lncRNA targets and miRNA precursors provide mechanistic insight into cadmium‑induced hormesis and its potential for crop improvement.
The study investigated whether wheat homoeologous genes actively compensate for each other when one copy acquires a premature termination codon (PTC) mutation. By analyzing mutagenised wheat lines, the authors found that only about 3% of cases exhibited upregulation of the unaffected homoeolog, indicating that widespread active transcriptional compensation is absent in wheat.
Tomato leaf transcriptomic changes promoted by long-term water scarcity stress can be largely prevented by a fungal-based biostimulant
Authors: Lopez-Serrano, L., Ferez-Gomez, A., Romero-Aranda, R., Jaime Fernandez, E., Leal Lopez, J., Fernandez Baroja, E., Almagro, G., Dolezal, K., Novak, O., Diaz, L., Bautista, R., Leon Morcillo, R. J., Pozueta Romero, J.
Foliar application of Trichoderma harzianum cell‑free culture filtrates (CF) increased fruit yield, root growth, and photosynthesis in a commercial tomato cultivar under prolonged water deficit in a Mediterranean greenhouse. Integrated physiological, metabolite, and transcriptomic analyses revealed that CF mitigated drought‑induced changes, suppressing about half of water‑stress responsive genes, thereby reducing the plant’s transcriptional sensitivity to water scarcity.
Overexpression of the wheat bHLH transcription factor TaPGS1 leads to increased flavonol accumulation in the seed coat, which disrupts polar auxin transport and causes localized auxin accumulation, delaying endosperm cellularization and increasing cell number, thereby enlarging grain size. Integrated metabolomic and transcriptomic analyses identified upregulated flavonol biosynthetic genes, revealing a regulatory module that links flavonol-mediated auxin distribution to seed development in wheat.
The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.
Exogenous Hormone Treatments Reveal Species-Specific Regulation of Individual Components of Root Architecture and Salt Ion Accumulation in Cultivated and Wild Tomatoes
Authors: Rahmati-Ishka, M., Craft, E., Pineros, M., Julkowska, M. M.
The study examined how individual hormone treatments (auxin, ethylene, gibberellin) influence root architecture and ion accumulation under salt stress in three tomato accessions, revealing species-specific hormonal effects on lateral root development and Na/K ratios. Genetic analyses using Arabidopsis mutants and a tomato ethylene‑perception mutant (nr) identified novel hormonal signaling components that modulate salt stress responses, highlighting potential strategies to improve crop performance.
The study evaluated how alginate oligosaccharide (AOS) chain length influences the levels of seven key phytohormones in wheat seedlings challenged with Botrytis cinerea. Hormone profiling revealed that mid‑range oligomers (DP 4‑6) most strongly up‑regulate defense‑related hormones (JA, SA, ABA, CTK), whereas longer oligomers (DP 7) most effectively suppress ethylene. These findings suggest that tailoring AOS polymerization can optimize disease resistance and growth in cereal crops.
The study performs a bibliometric analysis of 1,702 Scopus-indexed tomato omics publications over two decades, revealing a rapid surge in output after 2017 and highlighting dominant fields such as biochemistry, genetics, and molecular biology. Citation and co‑authorship network analyses identify key contributions in microRNA research and genome sequencing, major research hubs, and collaborative clusters, while keyword mapping underscores stress response, fruit quality, and immunity as priority topics.