The complete chloroplast genome of the endemic fruit species Dillenia philippinensis was sequenced, assembled, and annotated, revealing a 161,591‑bp quadripartite structure with 113 unique genes. Comparative analyses identified simple sequence repeats, codon usage patterns, and phylogenetic placement close to D. suffroticosa, providing a genomic resource for future breeding and conservation efforts.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
Thermotolerant pollen tube growth is controlled by RALF signaling.
Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.
The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.
The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
The study investigates how the timing of the vegetative phase change (VPC) in Arabidopsis thaliana influences drought adaptation, revealing strong genotype-by-environment interactions that create stage-specific fitness tradeoffs. Genotypes from warmer, drier Iberian climates transition earlier, and genome-wide association mapping identifies loci linked to VPC timing and drought response, with several candidates validated using T‑DNA insertion lines.
Discovery of tomato UDP-glucosyltransferases involved in bioactive jasmonate homeostasis using limited proteolysis-coupled mass spectrometry
Authors: Venegas-Molina, J., Mohnike, L., Selma Garcia, S., Janssens, H., Colembie, R., Kimpe, I., Jaramillo-Madrid, A. C., Lacchini, E., Winne, J. M., Van Damme, P., Feussner, I., Goossens, A., Sola, K.
The study applied limited proteolysis‑coupled mass spectrometry (LiP‑MS) to map JA‑protein interactions, validating known JA binders and uncovering novel candidates, including several UDP‑glucuronosyltransferases (UGTs). Functional omics, biochemical, enzymatic, and structural analyses demonstrated that two tomato UGTs glucosylate jasmonic acid, revealing a previously missing step in JA catabolism.
Six new Viola species and two reinstated species from China were identified using field surveys, detailed morphological comparison, and phylogenetic analysis of ITS and GPI gene sequences, placing them in section Plagiostigma subsect. Diffusae. The GPI data offered higher resolution, indicating complex relationships possibly due to ancient hybridization or incomplete lineage sorting, thereby clarifying species boundaries and evolutionary patterns in Chinese Viola.
The study assessed the impact of adding mammalian growth factors and cytokines to transformation media on CRISPR‑Cas9–mediated genome editing in six tomato (Solanum lycopersicum) accessions with varying regeneration capacities. Over three years, supplementation with these factors significantly increased regeneration rates and the production of stable secondary transgenic lines, especially in recalcitrant genotypes.
The researchers created tomato lines overexpressing the autophagy gene SlATG8f and evaluated their performance under high-temperature stress. qRT‑PCR and physiological measurements revealed that SlATG8f overexpression enhances expression of autophagy‑related and heat‑shock protein genes, accelerates fruit ripening, and improves fruit quality under heat stress.
The study provides a comprehensive genome-wide catalog and single‑cell expression atlas of the carbonic anhydrase (CA) gene family in maize, identifying 18 CA genes across α, β, and γ subfamilies and detailing their structural and regulatory features. Phylogenetic, synteny, promoter motif, bulk tissue RNA‑seq, and single‑cell RNA‑seq analyses reveal distinct tissue and cell‑type specific expression patterns, highlighting β‑CAs as key players in C4 photosynthesis and γ‑CAs in ion/pH buffering, and propose cell‑type‑specific CA genes as targets for improving stress resilience.