Integrating physiological, transcriptomic, and cellular analyses, the study shows that olive fruit abscission zones undergo lignification, alkalization, and extensive cell‑wall remodeling during natural maturation and after ethephon treatment. A set of 733 FAZ‑specific genes, including β‑1,3‑glucanases, pectate lyases, and pH‑regulating transporters, were identified, and increased glucanase activity together with reduced plasmodesmata callose suggest enhanced intercellular communication facilitates organ detachment in this non‑climacteric fruit.
Thermotolerant pollen tube growth is controlled by RALF signaling.
Authors: Althiab Almasaud, R., Ouonkap Yimga, S. V., Ingram, J., Oseguera, Y., Alkassem Alosman, M., Travis, C., Henry, A., Medina, M., Oulhen, N., Wessel, G. M., Delong, A., Pease, J., DaSilva, N., Johnson, M.
The study investigates the molecular basis of heat‑tolerant pollen tube growth in tomato (Solanum lycopersicum) by comparing thermotolerant and sensitive cultivars. Using live imaging, transcriptomics, proteomics, and genetics, the authors identified the Rapid Alkalinization Factor (RALF) signaling pathway as a key regulator of pollen tube integrity under high temperature, with loss of a specific RALF peptide enhancing tube integrity in a thermotolerant cultivar.
The study investigates the roles of the receptor-like kinase CRK2 and the RNA-binding protein GRP7 in regulating gibberellin signaling and floral transition in Arabidopsis, using phenotypic analyses of single and double mutants. Exogenous gibberellic acid treatments and transcript profiling reveal that CRK2 and GRP7 jointly modulate GA-responsive pathways, highlighting a novel regulatory layer involving membrane kinases and RNA-binding proteins.
The study investigates how a small molecule that lengthens circadian period can quantitatively adjust the critical day length required for flowering in monocot plants. By modulating the clock's timing, the researchers provide evidence supporting the external coincidence model of photoperiodic control.
Discovery of tomato UDP-glucosyltransferases involved in bioactive jasmonate homeostasis using limited proteolysis-coupled mass spectrometry
Authors: Venegas-Molina, J., Mohnike, L., Selma Garcia, S., Janssens, H., Colembie, R., Kimpe, I., Jaramillo-Madrid, A. C., Lacchini, E., Winne, J. M., Van Damme, P., Feussner, I., Goossens, A., Sola, K.
The study applied limited proteolysis‑coupled mass spectrometry (LiP‑MS) to map JA‑protein interactions, validating known JA binders and uncovering novel candidates, including several UDP‑glucuronosyltransferases (UGTs). Functional omics, biochemical, enzymatic, and structural analyses demonstrated that two tomato UGTs glucosylate jasmonic acid, revealing a previously missing step in JA catabolism.
The study demonstrates that limonene, a natural essential‑oil component, strongly inhibits Fusarium oxysporum, the causal agent of potato dry rot, by impairing colony growth, hyphal morphology, spore viability, membrane integrity, and transcription/translation processes, as well as disrupting ion homeostasis. Combined treatments reveal additive effects with mancozeb and synergistic effects with hymexazol, highlighting limonene's potential as an eco‑friendly bio‑fungicide for potato disease management.
The study assessed the impact of adding mammalian growth factors and cytokines to transformation media on CRISPR‑Cas9–mediated genome editing in six tomato (Solanum lycopersicum) accessions with varying regeneration capacities. Over three years, supplementation with these factors significantly increased regeneration rates and the production of stable secondary transgenic lines, especially in recalcitrant genotypes.
The researchers created tomato lines overexpressing the autophagy gene SlATG8f and evaluated their performance under high-temperature stress. qRT‑PCR and physiological measurements revealed that SlATG8f overexpression enhances expression of autophagy‑related and heat‑shock protein genes, accelerates fruit ripening, and improves fruit quality under heat stress.
Proteomic comparison of mock‑ and potato spindle tuber viroid‑infected tomato revealed a broad down‑regulation of nucleoporins and nuclear transport receptors, leading to impaired nuclear import of the immune regulator NPR1. Overexpression of NPR1 or treatment with a salicylic‑acid analog restored defense and reduced PSTVd infection, highlighting nuclear transport repression as a key vulnerability in plant immunity against viroids.
The study examined how allelic variation at three barley flowering-time genes (PPD‑H1, ELF3, and PHYC) influences photoperiod response parameters, revealing that ELF3 reduces intrinsic earliness and PhyC‑e lowers photoperiod sensitivity. By testing Near Isogenic Lines and HEB‑25 lines under 16–24 h photoperiods, the authors identified a 20‑h threshold for PPD‑H1 lines and proposed reduced photoperiod regimes (20 h and 16 h) for energy‑efficient speed breeding.