Quantitative trait locus mapping of root exudate metabolome in a Solanum lycopersicum Moneymaker x S. pimpinellifolium RIL population and their putative links to rhizosphere microbiome
Authors: Kim, B., Kramer, G., Leite, M. F. A., Snoek, B. L., Zancarini, A., Bouwmeester, H.
The study used untargeted metabolomics and QTL mapping in a tomato recombinant inbred line population to characterize root exudate composition and identify genetic loci controlling specific metabolites. It reveals domestication-driven changes in exudate profiles and links metabolic QTLs with previously reported microbial QTLs, suggesting a genetic basis for shaping the root microbiome.
The study identifies MtFTb1 and MtFTb2 as essential, redundant regulators of long‑day flowering in the legume Medicago truncatula, demonstrating that they are required for up‑regulating MtFTa1 under vernalised long‑day conditions. Using CRISPR/Cas9‑generated single and double mutants, the authors show that double mutants are specifically delayed in flowering under long days while retaining vernalization responsiveness, and transcriptomic analyses reveal that MtFTb1/2 activate MADS‑box genes and other flowering regulators.
Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens
Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.
The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.
Mutations in the plastid division gene PARC6 and the granule initiation gene BGC1 were combined to generate wheat plants with dramatically enlarged A-type starch granules, some exceeding 50 µm, without affecting plant growth, grain size, or overall starch content. The parc6 bgc1 double mutant was evaluated in both glasshouse and field trials, and the giant granules displayed altered viscosity and pasting temperature, offering novel functional properties for food and industrial applications.
A SABATH family enzyme regulates development via the gibberellin-related pathway in the liverwort Marchantia polymorpha
Authors: Kawamura, S., Shimokawa, E., Ito, M., Nakamura, I., Kanazawa, T., Iwano, M., Sun, R., Yoshitake, Y., Yamaoka, S., Yamaguchi, S., Ueda, T., Kato, M., Kohchi, T.
The study identified 12 SABATH methyltransferase genes in the liverwort Marchantia polymorpha and demonstrated that MpSABATH2 is crucial for normal thallus growth and gemma cup formation. Loss‑of‑function mutants displayed developmental phenotypes reminiscent of far‑red light responses, which were linked to gibberellin metabolism and could be partially rescued by inhibiting GA biosynthesis or supplying the GA precursor ent‑kaurenoic acid. These findings suggest that SABATH enzymes independently evolved regulatory roles in land‑plant development.
The study demonstrates that carbon availability promotes gemma cup formation in Marchantia polymorpha by activating cytokinin signaling, which up‑regulates the transcription factors MpGCAM1 and MpSTG. Pharmacological and genetic manipulations showed that cytokinin accumulation in response to sucrose and high light is sufficient to overcome low‑sucrose repression, and that this pathway operates independently of KAI2A‑MAX2 mediated karrikin signaling. The findings suggest a conserved carbon‑cytokinin interaction governing developmental plasticity across land plants.
A comprehensive multi‑environment trial of 437 maize testcross hybrids derived from 38 MLN‑tolerant lines and 29 testers identified additive genetic effects as the primary driver of grain yield, disease resistance, and drought tolerance. Strong general combining ability and specific combining ability patterns were uncovered, with top hybrids delivering up to 5.75 t ha⁻¹ under MLN pressure while maintaining high performance under optimum and drought conditions. The study provides a framework for selecting elite parents and exploiting both additive and non‑additive effects to develop resilient maize hybrids for sub‑Saharan Africa.
The study presents an optimized Agrobacterium-mediated transformation toolkit for Sorghum bicolor that achieves up to 95.7% editing efficiency using CRISPR/Cas9 targeting the SbPDS gene, and demonstrates comparable performance with a PAM‑broadened SpRY variant. This platform enables multiplex genome editing and is positioned for integration of advanced tools such as prime and base editors to accelerate sorghum breeding.
Glycosylated diterpenes associate with early containment of Fusarium culmorum infection across wheat (Triticum aestivum L.) genotypes under field conditions
Authors: Pieczonka, S. A., Dick, F., Bentele, M., Ramgraber, L., Prey, L., Kupczyk, E., Seidl-Schulz, J., Hanemann, A., Noack, P. O., Asam, S., Schmitt-Kopplin, P., Rychlik, M.
The researchers performed a large‑scale field trial with 105 wheat (Triticum aestivum) genotypes inoculated by Fusarium culmorum, combining quantitative deoxynivalenol (DON) profiling and untargeted metabolomics to uncover molecular signatures of infection. Sesquiterpene‑derived metabolites tracked toxin accumulation, whereas glycosylated diterpene conjugates were enriched in low‑DON samples, indicating a potential defensive metabolic pathway.
Vacuolar invertase knockout enhances drought tolerance in potato plants
Authors: Roitman, M., Teper-Bamnolker, P., Doron-Faigenboim, A., Sikron, N., Fait, A., Vrobel, O., Tarkowski, P., Moshelion, M., Bocobza, S., Eshel, D.
CRISPR/Cas9 knockout of the vacuolar invertase gene (StVInv) in potato enhanced drought resilience, with mutants maintaining higher stomatal conductance, transpiration, and photosynthetic efficiency, leading to improved agronomic water-use efficiency and biomass under water limitation. Metabolomic profiling showed accumulation of galactinol and raffinose, while ABA levels were reduced, indicating altered osmoprotective and hormonal responses that support sustained growth during drought.