CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds
Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.
The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.
The study examines how ectopic accumulation of methionine in Arabidopsis thaliana leaves, driven by a deregulated AtCGS transgene under a seed‑specific promoter, reshapes metabolism, gene expression, and DNA methylation. High‑methionine lines exhibit increased amino acids and sugars, activation of stress‑hormone pathways, and reduced expression of DNA methyltransferases, while low‑methionine lines show heightened non‑CG methylation without major transcriptional changes. Integrated transcriptomic and methylomic analyses reveal a feedback loop linking sulfur‑carbon metabolism, stress adaptation, and epigenetic regulation.
Integrative comparative transcriptomics using cultivated and wild rice reveals key regulators of developmental and photosynthetic progression along the rice leaf developmental gradient
Authors: Jathar, V., Vivek, A., Panda, M. K., Daware, A. V., Dwivedi, A., Rani, R., Kumar, S., Ranjan, A.
The study performed comparative gene expression profiling across four rice accessions—from shoot apical meristem to primordia stage P5—to delineate developmental and photosynthetic transitions in leaf development. By integrating differential expression and gene regulatory network analyses, the authors identified stage-specific regulatory events and key transcription factors, such as RDD1, ARID2, and ERF3, especially in the wild rice Oryza australiensis, offering a comprehensive framework for optimizing leaf function.
Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis
Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.
The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.
The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study functionally characterizes three tomato CNR/FWL proteins (SlFWL2, SlFWL4, SlFWL5) and demonstrates that SlFWL5 localizes to plasmodesmata, where it regulates leaf size and morphology by promoting cell expansion likely through cell‑to‑cell communication. Gain‑ and loss‑of‑function transgenic tomato lines reveal that SlFWL5 is a key regulator of organ growth via modulation of plasmodesmatal signaling.
The study constructs a ~1‑million‑cell single‑nuclei transcriptome atlas of Arabidopsis leaves to reveal that drought stress accelerates transcriptional programs associated with maturation and aging, thereby limiting leaf growth in proportion to stress intensity. Targeted upregulation of FERRIC REDUCTION OXIDASE 6 in mesophyll cells partially rescues leaf growth under drought, demonstrating the functional relevance of these transcriptional changes.