The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study generated two allotriploid Brassica hybrids (ArAnCn) to investigate asymmetric subgenome dominance, finding that the Cn subgenome dominates despite the An subgenome showing highest expression levels. Increased density of accessible chromatin regions (ACRs) in the Cn subgenome correlates with dominant gene expression, while changes in CHH methylation and specific RNA‑directed DNA methylation pathway mutants affect subgenome bias.
The study examined 57 global accessions of the invasive hybrid Kalanchoe xhoughtonii and its parents, revealing extensive cytogenetic and genomic variation among morphotypes but identifying a single tetraploid genotype (morphotype A) that dominates worldwide. This genotype exhibits remarkable genetic uniformity, high phenotypic plasticity, and prolific vegetative propagation, illustrating how hybridization and polyploidy can drive rapid invasive success.
The study examined transposable element (TE) silencing in the duckweed Spirodela polyrhiza, which exhibits unusually low DNA methylation, scarce 24‑nt siRNAs, and missing RdDM components. While degenerated TEs lack DNA methylation and H3K9me2, they retain heterochromatin marks H3K9me1 and H3K27me1, whereas the few intact TEs show high DNA methylation and H3K9me2, indicating a shift in RdDM focus toward potentially active TEs and suggesting heterochromatin can be maintained independently of DNA methylation in flowering plants.