Sorghum embryos undergoing B chromosome elimination express B-variants of mitotic-related genes
Authors: Bojdova, T., Hlouskova, L., Holusova, K., Svacina, R., Hribova, E., Ilikova, I., Thiel, J., Kim, G., Pleskot, R., Houben, A., Bartos, J., Karafiatova, M.
The study characterizes tissue-specific elimination of B chromosomes in Sorghum purpureosericeum during embryo development, identifying 28 candidate genes linked to this process. Integrated in situ visualization, genome sequencing, and transcriptomic analyses reveal that the B chromosome originates from multiple A chromosomes, harbors unique repeats, and expresses divergent kinetochore components that likely mediate its selective removal.
The study evaluated whether integrating genomic, transcriptomic, and drone-derived phenomic data improves prediction of 129 maize traits across nine environments, using both linear (rrBLUP) and nonlinear (SVR) models. Multi-omics models consistently outperformed single-omics models, with transcriptomic data especially enhancing cross‑environment predictions and capturing genotype‑by‑environment interactions. The results highlight the added value of combining transcriptomics and phenomics with genotypes for more accurate and generalizable trait prediction in maize.
Phytoplasma infection in sesame (Sesamum indicum) triggers tissue-specific alterations in gene expression and metabolite composition, with floral organs adopting leaf-like traits and distinct changes in porphyrin, brassinosteroid, and phenylpropanoid pathways. Integrated transcriptomic and metabolomic analyses, supported by biochemical, histological, and qRT-PCR assays, reveal differential stress and secondary metabolite responses between infected leaves and flowers.
Light on its feet: Acclimation to high and low diurnal light is flexible in Chlamydomonas reinhardtii
Authors: Dupuis, S., Chastain, J. L., Han, G., Zhong, V., Gallaher, S. D., Nicora, C. D., Purvine, S. O., Lipton, M. S., Niyogi, K. K., Iwai, M., Merchant, S. S.
The study examined how prior light‑acclimation influences the fitness and rapid photoprotective reprogramming of Chlamydomonas during transitions between low and high diurnal light intensities. While high‑light‑acclimated cells struggled to grow and complete the cell cycle after shifting to low light, low‑light‑acclimated cells quickly remodeled thylakoid ultrastructure, enhanced photoprotective quenching, and altered photosystem protein levels, recovering chloroplast function within a single day. Transcriptomic and proteomic profiling revealed swift induction of stress‑response genes, indicating high flexibility in diurnal light acclimation.
DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana
Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.
The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.
The study investigates the evolutionary shift from archegonial to embryo‑sac reproduction by analyzing transcriptomes of Ginkgo reproductive organs and related species. It reveals that the angiosperm pollen‑tube guidance module MYB98‑CRP‑ECS is active in mature Ginkgo archegonia and that, while egg cell transcription is conserved, changes in the fate of other female gametophyte cells drove the transition, providing a molecular framework for this major reproductive evolution.
The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.
Salt stress strongly suppresses root growth in Festuca rubra while sparing shoot development. Transcriptome profiling identified over 68,000 differentially expressed genes, with up‑regulated genes enriched in methionine, melatonin, and suberin biosynthesis and down‑regulated genes involved in gibberellin, ABA, and sugar signaling, indicating extensive hormonal and metabolic reprogramming. Paradoxical regulation of gibberellin and ethylene pathways suggests a finely tuned balance between growth and stress responses.
Gain and loss of gene function shaped the nickel hyperaccumulation trait in Noccaea caerulescens
Authors: Belloeil, C., Garcia de la Torre, V. S., Contreras Aguilera, R., Kupper, H., Lopez-Roques, C., Iampetro, C., Vandecasteele, C., Klopp, C., Launay-Avon, A., Leemhuis, W., Yamjabok, J., van den Heuvel, J., Aarts, M. G. M., Quintela Sabaris, C., Thomine, S., MERLOT, S.
The study presents a high-quality genome assembly for the nickel hyperaccumulator Noccaea caerulescens and uses it as a reference for comparative transcriptomic analyses across different N. caerulescens accessions and the non‑accumulating relative Microthlaspi perfoliatum. It identifies a limited set of metal transporters (NcHMA3, NcHMA4, NcIREG2, and NcIRT1) whose elevated expression correlates with hyperaccumulation, and demonstrates that frameshift mutations in NcIRT1 can abolish the trait, indicating an ancient, transporter‑driven origin of nickel hyperaccumulation.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.