Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
High-quality PacBio HiFi draft genome assemblies were generated for three Bouteloua species (B. curtipendula, B. gracilis, B. eriopoda) with >98.5% BUSCO completeness. Gene prediction with Helixer produced inflated gene counts likely reflecting polyploidy and fragmented predictions, and panEDTA identified 25–40% transposable-element content dominated by LTR retrotransposons. These assemblies provide foundational references for comparative genomics within PACMAD grasses.
Chromosome-level genome assembly of the gerbera (Gerbera hybrida) using HiFi long-read and Hi-C technologies
Authors: Aoyagi, Y. B., Shimada, R., Hirakawa, H., Toyoda, A., Toh, H., Isobe, S., Tajima, N., Shirasawa, K., Horiike, T., Fujii, H., Fujiwara, T., Bamba, M., Nakatsuka, T., Tominaga, A.
The study presents high-quality nuclear and organellar genome assemblies for Gerbera hybrida, generated using PacBio HiFi and Omni-C chromatin capture sequencing, resulting in a 2.32 Gb nuclear genome assembled into 25 scaffolds matching its chromosome number. Annotation identified 36,160 protein‑coding genes and detailed mitochondrial and chloroplast genomes, establishing a valuable genomic resource for molecular breeding and research in Gerbera and the Asteraceae family.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.