Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study demonstrates that Magnesium Iron-layered double hydroxide (MgFe-LDH) nanocarriers effectively protect and deliver fungal effector dsRNA to pea leaves, enabling sustained gene silencing of Erysiphe pisi and providing enhanced local and systemic powdery mildew resistance for up to 15 days. The LDH formulation exhibits strong leaf adherence, biocompatibility, RNase protection, and rapid uptake into plant cells and fungal haustoria, outperforming dsRNA or LDH alone.
AGO5 restricts virus vertical transmission in plant gametophytes
Authors: Hoffmann, G., Sadhu, S. P., Bradamante, G., Diez Marulanda, J. C., Proschwitz, A., Wegscheider, T., Turhan, I., Bente, H., Gutzat, R., Incarbone, M.
The study demonstrates that the RNAi factor AGO5, expressed in Arabidopsis thaliana shoot apical meristem stem cells and germline, markedly reduces vertical transmission of Turnip yellow mosaic virus (TYMV). Using controlled pollination with ago5 knock‑out and cell type‑specific rescue lines, the authors show that AGO5 functions in pollen and sperm cells to block virus passage, and that targeted activation of antiviral RNAi in sperm further lowers transmission rates.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study identified lineage-specific long non‑coding RNAs (lncRNAs) from the aphid‑specific Ya gene family in Rhopalosiphum maidis and R. padi, demonstrating that these Ya lncRNAs are secreted into maize, remain stable, and move systemically. RNA interference of Ya genes reduced aphid fecundity, while ectopic expression of Ya lncRNAs in maize enhanced aphid colonization, indicating that Ya lncRNAs act as cross‑kingdom effectors that influence aphid virulence.
The study characterizes insertion mutants of the Arabidopsis thaliana CKL12 kinase, revealing its role in hypocotyl and primary root growth and indicating that the 3' end of its transcript is crucial for function. Evidence suggests CKL12 is transcriptionally regulated by brassinosteroid signaling, as its promoter binds BR-related transcription factors and their RNAi-mediated knock‑down reduces CKL12 expression, placing CKL12 downstream of BR signaling in seedling development.
The study identifies the brown planthopper salivary protein NlAnnexin-like5 (NlANX5) as a key virulence effector that disrupts rice annexin (OsANN) function, leading to altered calcium signaling and reduced plant resistance. RNAi silencing of NlANX5 impairs BPH feeding, while transgenic rice overexpressing OsANN2/OsANN8 or NlANX5 restores resistance, demonstrating an anti‑virulence breeding strategy for rice.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
The study introduces a minimal precursor platform for synthetic trans-acting siRNAs (syn-tasiRNAs) in tomato, leveraging the endogenous SlmiR482b microRNA to produce functional silencing agents in both transgenic and virus-induced gene silencing (VIGS) systems. Minimal precursors successfully silenced endogenous genes and conferred resistance to tomato spotted wilt virus, and a transgene‑free delivery via crude extracts was demonstrated, highlighting a versatile tool for precision RNAi in Solanum lycopersicum.