Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
CLPC2 plays specific roles in CLP complex-mediated regulation of growth, photosynthesis, embryogenesis and response to growth-promoting microbial compounds
Authors: Leal-Lopez, J., Bahaji, A., De Diego, N., Tarkowski, P., Baroja-Fernandez, E., Munoz, F. J., Almagro, G., Perez, C. E., Bastidas-Parrado, L. A., Loperfido, D., Caporalli, E., Ezquer, I., Lopez-Serrano, L., Ferez-Gomez, A., Coca-Ruiz, V., Pulido, P., Morcillo, R. J. L., Pozueta-Romero, J.
The study demonstrates that the plastid chaperone CLPC2, but not its paralogue CLPC1, is essential for Arabidopsis responsiveness to microbial volatile compounds and for normal seed and seedling development. Loss of CLPC2 alters the chloroplast proteome, affecting proteins linked to growth, photosynthesis, and embryogenesis, while overexpression of CLPC2 mimics CLPC1 deficiency, highlighting distinct functional roles within the CLP protease complex.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis
Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.
The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
Revisiting the Central Dogma: the distinct roles of genome, methylation, transcription, and translation on protein expression in Arabidopsis thaliana
Authors: Zhong, Z., Bailey, M., Kim, Y.-I., Pesaran-Afsharyan, N., Parker, B., Arathoon, L., Li, X., Rundle, C. A., Behrens, A., Nedialkova, D. D., Slavov, G., Hassani-Pak, K., Lilley, K. S., Theodoulou, F. L., Mott, R.
The study combined long‑read whole‑genome assembly, multi‑omics profiling (DNA methylation, mRNA, ribosome‑associated transcripts, tRNA abundance, and protein levels) in two Arabidopsis thaliana accessions to evaluate how genomic information propagates through the Central Dogma. Codon usage in gene sequences emerged as the strongest predictor of both mRNA and protein abundance, while methylation, tRNA levels, and ribosome‑associated transcripts contributed little additional information under stable conditions.
The study performed a comprehensive computational analysis of the Arabidopsis thaliana proteome, classifying 48,359 proteins by melting temperature (Tm) and melting temperature index (TI) and linking thermal stability to amino acid composition, molecular mass, and codon usage. Machine‑learning and evolutionary analyses revealed that higher molecular mass and specific codon pairs correlate with higher Tm, and that gene duplication has driven the evolution of high‑Tm proteins, suggesting a genomic basis for stress resilience.