Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study generated a single‑cell transcriptomic atlas of tomato adventitious root development, revealing that vascular tissues retain high developmental potential and that the DOF11‑LEA3 regulatory axis drives this process. Cross‑species integration shows tomato AR‑initiating cells share transcriptional programs with woody dicots but not Arabidopsis, suggesting AR competence is an ancestral vascular identity module. These results highlight tomato as a more representative model for AR biology and provide targets for improving vegetative propagation.
A comprehensive multi‑environment trial of 437 maize testcross hybrids derived from 38 MLN‑tolerant lines and 29 testers identified additive genetic effects as the primary driver of grain yield, disease resistance, and drought tolerance. Strong general combining ability and specific combining ability patterns were uncovered, with top hybrids delivering up to 5.75 t ha⁻¹ under MLN pressure while maintaining high performance under optimum and drought conditions. The study provides a framework for selecting elite parents and exploiting both additive and non‑additive effects to develop resilient maize hybrids for sub‑Saharan Africa.
The study identified two wheat genes tightly linked to the triple pistil (TP) phenotype and created functional co‑dominant markers for early selection. CRISPR‑Cas9 editing of one gene converted TP florets to single‑grain florets, while field evaluation showed TP wheat increases grains per spike without reducing grain weight, highlighting its breeding value.
Growth and Yield Response of Soft White Common Spring Wheat (SWCSW) Varieties under Different Nitrogen Fertilizations and Plant Growth Regulators Applications
The study evaluated the effects of plant growth regulators (PGRs) applied at tillering, stem elongation, and flag leaf emergence on two Soft White Common Spring Wheat varieties (Louise and Diva) under low and high nitrogen levels using a split‑plot field design over two seasons. PGR treatments generally increased stem diameter and reduced height, improving stem strength and reducing lodging, while grain yield responses were variable but positive for certain PGR combinations. The results suggest that 168 kg N ha⁻¹ provides adequate productivity, though long‑term studies are recommended.
The study used chemically induced effector-triggered immunity combined with single-cell transcriptomics to map immune responses across all leaf cell types in Arabidopsis, revealing that while a core defense program is universally activated, individual cell types deploy distinct transcriptional modules. Functional assays showed that epidermis‑specific transcriptional regulators are essential for preventing pathogen penetration, indicating a spatial division of immune functions within the leaf.
Gene regulatory network analysis of somatic embryogenesis identifies morphogenic genes that increase maize transformation frequency
Authors: Renema, J., Luckicheva, S., Verwaerde, I., Aesaert, S., Coussens, G., De Block, J., Grones, C., Eekhout, T., De Rybel, B., Brew-Appiah, R. A. T., Bagley, C. A., Hoengenaert, L., Vandepoele, K., Pauwels, L.
The study co‑expressed BABY BOOM and WUSCHEL2 in maize embryos and used single‑cell transcriptomics to infer cell‑type‑specific gene regulatory networks underlying induced somatic embryogenesis. By prioritizing and functionally validating four novel transcription factors, the authors enhanced maize transformation efficiency and produced fertile transgenic plants.
The study measured how plant mass relates to growth rate across 195 European winter wheat cultivars under greenhouse conditions, revealing genetic variation in allometric scaling linked to leaf allocation and development speed. A genetic association with the Photoperiod response-1 (Ppd-1) gene connected greenhouse allometry to genotype‑by‑environment interactions affecting grain yield in field trials, highlighting the agronomic relevance of growth allometry.
The study examined over six decades of USDA Hard Red Spring Wheat Uniform Regional Nursery data to quantify genetic gains in key agronomic traits. It found a modest positive genetic gain of 0.61% per year for grain yield, with stable grain protein levels despite a negative yield‑protein correlation, and highlighted varying gains among breeding programs, especially a ~1% per annum increase in Minnesota's public program.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.