Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study investigates the role of the chromatin regulator MpSWI3, a core subunit of the SWI/SNF complex, in the liverwort Marchantia polymorpha. A promoter mutation disrupts male gametangiophore development and spermiogenesis, causing enhanced vegetative propagation, and transcriptomic analysis reveals that MpSWI3 regulates genes controlling reproductive initiation, sperm function, and asexual reproduction, highlighting its ancient epigenetic role in balancing vegetative and reproductive phases.
An Axiom SNP genotyping array for potato: development, evaluation and applications
Authors: Baig, N., Thelen, K., Ayenan, M. A. T., Hartje, S., Obeng-Hinneh, E., Zgadzaj, R., Renner, J., Muders, K., Truberg, B., Rosen, A., Prigge, V., Bruckmueller, J., Luebeck, J., Van Inghelandt, D., Stich, B.
The study reports the creation and validation of a high‑density Axiom SNP array for Solanum tuberosum, based on 10X Genomics sequencing of 108 diverse clones and integration of existing Illumina markers. The array demonstrated high reproducibility and, after filtering, provided 206,616 informative markers for population structure analysis, GWAS of polyphenol oxidase activity, and genomic prediction with accuracies up to 0.86.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.