Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study created a system that blocks root‑mediated signaling between wheat varieties in a varietal mixture and used transcriptomic and metabolomic profiling to reveal that root chemical interactions drive reduced susceptibility to Septoria tritici blotch, with phenolic compounds emerging as key mediators. Disruption of these root signals eliminates both the disease resistance phenotype and the associated molecular reprogramming.
PlantCV v4: Image analysis software for high-throughput plant phenotyping
Authors: Schuhl, H., Brown, K. E., Sheng, H., Bhatt, P. K., Gutierrez, J., Schneider, D., Casto, A. L., Acosta-Gamboa, L., Ballenger, J. G., Barbero, F., Braley, J., Brown, A. M., Chavez, L., Cunningham, S., Dilhara, M., Dimech, A. M., Duenwald, J. G., Fischer, A., Gordon, J. M., Hendrikse, C., Hernandez, G. L., Hodge, J. G., Huber, M., Hurr, B. M., Jarolmasjed, S., Medina Jimenez, K., Kenney, S., Konkel, G., Kutschera, A., Lama, S., Lohbihler, M., Lorence, A., Luebbert, C., Ly, N., Manching, H. K., Marrano, A., Meerdink, S., Miklave, N. M., Mudrageda, P., Murphy, K. M., Peery, J. D., Pierik, R., Polyd
PlantCV v4 is an open-source Python framework that simplifies image-based plant phenotyping by providing extensive tutorials and streamlined installation, enabling users with limited coding skills to automate trait extraction. The release adds support for fluorescence, thermal, and hyperspectral imaging and introduces a new subpackage for morphological measurements such as leaf angle, which is validated against manual data collection methods.
The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
The study presents an optimized Agrobacterium-mediated transformation protocol for bread wheat that incorporates a GRF4‑GIF1 fusion to enhance regeneration and achieve genotype‑independent transformation across multiple cultivars. The approach consistently improves transformation efficiency while limiting pleiotropic effects, offering a versatile platform for functional genomics and gene editing in wheat.
Phenotypic scoring of Canola Blackleg severity using machine learning image analysis
Authors: Hu, Q., Anderson, S. N., Gardner, S., Ernst, T. W., Koscielny, C. B., Bahia, N. S., Johnson, C. G., Jarvis, A. C., Hynek, J., Coles, N., Falak, I., Charne, D. R., Ruidiaz, M. E., Linares, J. N., Mazis, A., Stanton, D. J.
The study introduces a deep‑learning based image analysis pipeline that scores blackleg disease severity from stem cross‑section images of canola species, achieving greater consistency than median expert raters while preserving comparable heritability of susceptibility traits. This standardized scoring method aims to improve selection of resistant varieties in breeding programs.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.