Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
Modulation of the GT Family 47 clade B gene affects arabinan deposition in elaters of Marchantia polymorpha
Authors: Kang, H. S. F., Lampugnani, E. R., Tong, X., Prabhakar, P. K., Flores-Sandoval, E., Hansen, J., Jorgensen, B., Bowman, J. L., Urbanowicz, B. R., Ebert, B., Persson, S.
The study investigates the function of two GT47B arabinan arabinosyltransferases in the liverwort Marchantia polymorpha, generating loss‑of‑function and overexpression lines to assess cell wall composition. Using CoMPP, glycosyl linkage analysis, and LM6 immunolabelling, the authors found that MpARADL2 mutants have reduced 1,5‑L‑arabinan epitopes in elaters despite unchanged overall 5‑linked Araf levels, suggesting additional enzymes compensate in thallus tissue. Attempts to express and purify the enzymes in HEK293 cells failed, implying a clade‑specific solubility requirement and highlighting the need to identify interacting partners.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.