Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
The study investigates how elevated atmospheric CO2 influences Arabidopsis thaliana development by altering epigenetic memory and 3D chromatin architecture. Using methylation-sensitive Hi‑C and deep sequencing, the authors show CO2‑induced chromatin decondensation, changes in 5‑methylcytosine and histone marks, and the formation of specific chromatin loops that coordinate stress‑responsive genes through RdDM and Polycomb group proteins. These findings reveal a topological framework linking epigenetic reprogramming to accelerated growth under high CO2 conditions.
The study evaluated a transgenic soybean line (VPZ-34A) expressing Arabidopsis VDE, PsbS, and ZEP for combined improvements in light‑use efficiency and carbon assimilation under ambient and elevated CO2 in a FACE experiment. While VPZ‑34A showed enhanced maximum quantum efficiency of PSII under fluctuating light, it did not increase carbon assimilation efficiency or yield, and transcriptome analysis revealed limited gene expression changes. The results suggest that VPZ‑mediated photosynthetic gains are insufficient to boost productivity under elevated CO2.
The study examined how a biological nitrification inhibition (BNI) wheat line (Triticum aestivum cv. ROELFS) responds to elevated CO2 under acidic and alkaline soil conditions, finding that the BNI line consistently lowered N2O emissions by suppressing nitrifying microbes without major shifts in overall community composition. Elevated CO2 altered N2O emissions in a pH-dependent manner, with the BNI line mitigating emission increases in acidic soils and enhancing reductions in alkaline soils through changes in denitrifier abundance.
Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming
Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.
The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.
Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis
Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.
The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.
Multi-year study on the effects of elevated CO2 in mature oaks unravels subtle metabolic adjustments but stable biotic stress resistance
Authors: Sanchez-Lucas, R., Raw, M., Datta, A., Hawkins, K., Brettle, D., Platt, E. A., Ullah, S., Hart, K., Mayoral, C., Stegner, M., Kranner, I., Hayward, S. A., Pastor, V., MacKenzie, A. R., Luna, E.
A long‑term FACE experiment exposing 180‑year‑old Quercus robur to +150 ppm CO₂ showed seasonal declines in powdery mildew and insect herbivory but no consistent change in biotic stress incidence. Metabolomic analyses revealed widespread shifts in amino acid, Coenzyme A, and redox pathways, indicating extensive metabolic plasticity without altered resistance to pathogens or herbivores.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
This review compiles experimental studies on wheat to assess how elevated CO₂, higher temperatures, and water deficit interact and affect productivity and water use. By calculating plasticity indices, the authors find that despite CO₂‑induced gains, overall yield generally declines under combined stress, while water consumption often decreases. They highlight the need for more data to improve and validate crop models under future climate scenarios.