Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study characterizes a novel variegated barley mutant whose phenotype results from duplicate dominant epistasis, representing the first documented digenic control in chloroplast-deficient mutants. Whole-genome resequencing mapped the causative loci Var4 and Var5 to chromosomes 2H and 3H, identifying an NBR1-like autophagy receptor and a DNAJ-domain protein as candidate genes involved in chloroplast proteostasis. The authors propose that combined mild proteostasis defects from each mutation exceed a functional threshold, disrupting early chloroplast development while allowing later recovery.
Evolution of HMA-integrated tandem kinases accompanied by expansion of target pathogens
Authors: Asuke, S., Tagle, A. G., Hyon, G.-S., Koizumi, S., Murakami, T., Horie, A., Niwamoto, D., Katayama, E., Shibata, M., Takahashi, Y., Islam, M. T., Matsuoka, Y., Yamaji, N., Shimizu, M., Terauchi, R., Hisano, H., Sato, K., Tosa, Y.
The study cloned the resistance genes Rmo2 and Rwt7 from barley and wheat, revealing them as orthologous tandem kinase proteins (TKPs) with an N‑terminal heavy metal‑associated (HMA) domain. Domain‑swapping experiments indicated that the HMA domain dictates effector specificity, supporting a model of TKP diversification into paralogs and orthologs that recognize distinct pathogen effectors.
The authors used a bottom‑up thermodynamic modelling framework to investigate how plants decode calcium signals, starting from Ca2+ binding to EF‑hand proteins and extending to higher‑order decoding modules. They identified six universal Ca2+-decoding modules that can explain variations in calcium sensitivity among kinases and provide a theoretical basis for interpreting calcium signal amplitude and frequency in plant cells.
Four barley genotypes were examined under simultaneous Fusarium culmorum infection and drought, revealing genotype-dependent Fusarium Head Blight severity and largely additive transcriptomic responses dominated by drought. Co‑expression and hormone profiling linked ABA and auxin to stress‑specific gene modules, and a multiple linear regression model accurately predicted combined‑stress gene expression from single‑stress data, suggesting modular regulation.
The study used ft1 knock‑out mutants in barley to demonstrate that the florigen homolog FT1 links vegetative and reproductive meristem development with plant metabolism, influencing source‑sink dynamics, longevity, and fertility. Loss of FT1 caused altered leaf and inflorescence determinacy, increased organ size but reduced fertility, and a transcriptional shift toward photosynthetic and carbon‑catabolism genes, while soluble sugar and starch accumulated in inflorescences, indicating diminished sink strength.
The study examined nitrogen use strategies in the model alga Chlamydomonas reinhardtii by comparing growth on ammonium, nitrate, and urea, finding similar molar nitrogen utilization efficiency under saturating conditions. Rapid nitrogen uptake and storage were demonstrated through pulse experiments, and source‑specific transcriptome analysis revealed distinct regulation of assimilation pathways and transporters, supporting a model of flexible nitrogen acquisition and storage.
The study generated comprehensive hormonal profiles of hazelnut catkins across the dormancy period, revealing that abscisic acid declines while gibberellins rise, resulting in a decreasing ABA/GA ratio that correlates with dormancy release. Cytokinins unexpectedly increased throughout dormancy, auxin conjugates and ethylene precursors showed distinct patterns between early and late blooming accessions, suggesting hormone manipulation could delay bloom.
Evaluation of combined root exudate and rhizosphere microbiota sampling approaches to elucidate plant-soil-microbe interaction
Authors: Escudero-Martinez, C., Browne, E. Y., Schwalm, H., Santangeli, M., Brown, M., Brown, L., Roberts, D. M., Duff, A. M., Morris, J., Hedley, P. E., Thorpe, P., Abbott, J. C., Brennan, F., Bulgarelli, D., George, T. S., Oburger, E.
The study benchmarked several sampling approaches for simultaneous profiling of root exudates and rhizosphere microbiota in soil-grown barley, revealing consistent exudate chemistry across methods but variation in root morphology and nitrogen exudation. High‑throughput amplicon sequencing and quantitative PCR showed protocol‑specific impacts on microbial composition, yet most rhizosphere-enriched microbes were captured by all approaches. The authors conclude that different protocols provide comparable integrated data, though methodological differences must be aligned with experimental objectives.
The study investigates how maternal environmental conditions, specifically temperature and light intensity, influence seed longevity in eight Arabidopsis thaliana natural accessions. Seeds developed under higher temperature (27 °C) and high light showed increased longevity, with transcriptome analysis of the Bor-4 accession revealing dynamic changes in stored mRNAs, including upregulation of antioxidant defenses and raffinose family oligosaccharides. These findings highlight the genotype‑dependent modulation of seed traits by the maternal environment.