Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study examined how elevated atmospheric CO₂ (550 ppm) affects immunity in the C₄ cereal maize (Zea mays L.) by exposing plants grown under ambient and elevated CO₂ to a range of pathogens. Elevated CO₂ increased susceptibility to sugarcane mosaic virus, decreased susceptibility to several bacterial and fungal pathogens, and left susceptibility to others unchanged, with reduced bacterial disease linked to heightened basal immune responses. These findings provide a baseline for future investigations into CO₂‑responsive defense mechanisms in C₄ crops.
The authors compiled and standardized published data on Rubisco dark inhibition for 157 flowering plant species, categorizing them into four inhibition levels and analyzing phylogenetic trends. Their meta‑analysis reveals a complex, uneven distribution of inhibition across taxa, suggesting underlying chloroplast microenvironment drivers and providing a new resource for future photosynthesis improvement efforts.
The study combined high-throughput image-based phenotyping with genome-wide association studies to uncover the genetic architecture of tolerance to the spittlebug Aeneolamia varia in 339 interspecific Urochloa hybrids. Six robust QTL were identified for plant damage traits, explaining up to 21.5% of variance, and candidate genes linked to hormone signaling, oxidative stress, and cell‑wall modification were highlighted, providing markers for breeding.
The first nested association mapping (NAM) population for outbreeding Italian ryegrass reveals candidate genes for seed shattering and related traits
Authors: Kiesbauer, J., Grieder, C., Sindelar, M., Schlatter, L. H., Ariza-Suarez, D., Yates, S., Stoffel-Studer, I., Copetti, D., Studer, B., Koelliker, R.
The study generated the first nested association mapping (NAM) population in the outcrossing forage grass Italian ryegrass (Lolium multiflorum) to investigate seed shattering and related traits, using ddRAD sequencing of 708 F2 individuals combined with whole-genome sequencing of 24 founders to obtain over 3 million SNPs for population structure, parentage, and GWAS analyses. Seven QTL were identified for seed shattering and other agronomic traits, leading to the discovery of candidate genes, including one associated with ripening pathways that explained 10% of phenotypic variance, demonstrating the utility of NAM for dissecting complex traits in outcrossing grasses.
The study provides a comprehensive genome-wide catalog and single‑cell expression atlas of the carbonic anhydrase (CA) gene family in maize, identifying 18 CA genes across α, β, and γ subfamilies and detailing their structural and regulatory features. Phylogenetic, synteny, promoter motif, bulk tissue RNA‑seq, and single‑cell RNA‑seq analyses reveal distinct tissue and cell‑type specific expression patterns, highlighting β‑CAs as key players in C4 photosynthesis and γ‑CAs in ion/pH buffering, and propose cell‑type‑specific CA genes as targets for improving stress resilience.
The study integrated genetic architecture derived from maize GWAS into phenotypic simulations of hybrid populations, using ≥200 top GWAS hits and adjusting marker effect sizes, which increased the correlation between simulated and empirical trait data across environments (r = 0.397–0.915). These informed simulations produced realistic trait distributions and genomic prediction results that closely matched empirical observations, demonstrating improved utility for digital breeding programs.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
The study compared physiological, ion‑balance, and metabolic responses of two maize inbred lines—salt‑sensitive C68 and salt‑tolerant NC326—under salinity stress. Untargeted metabolomics identified 56 metabolites and, together with genetic analysis, linked 10 candidate genes to key protective metabolites, revealing constitutive and inducible mechanisms of salt tolerance.
The study models maize flowering time plasticity using a physiological reaction norm derived from multi-environment trial data, revealing genotype-specific differences in temperature-driven development and photoperiod perception. It introduces an envirotyping metric that shows genotypes can experience markedly different photoperiods even within the same environment, and demonstrates distinct adaptive strategies between tropical and temperate germplasm.