The study examined three fruit morphotypes of the desert shrub Haloxylon ammodendron, revealing distinct germination performances under salt and drought stress. Proteomic analysis identified 721 differentially expressed proteins, particularly between the YP and PP morphotypes, linking stress‑responsive protein abundance to rapid germination in YP and delayed germination in PP as contrasting adaptive strategies. The findings suggest that fruit polymorphism facilitates niche differentiation and informs germplasm selection for desert restoration.
The study profiled root transcriptomes of Arabidopsis wild type and etr1 gain-of-function (etr1-3) and loss-of-function (etr1-7) mutants under ethylene or ACC treatment, identifying 4,522 ethylene‑responsive transcripts, including 553 that depend on ETR1 activity. ETR1‑dependent genes encompassed ethylene biosynthesis enzymes (ACO2, ACO3) and transcription factors, whose expression was further examined in an ein3eil1 background, revealing that both ETR1 and EIN3/EIL1 pathways regulate parts of the network controlling root hair proliferation and lateral root formation.
The study tracked molecular changes in plastoglobules and thylakoids of Zea mays B73 during heat stress and recovery, revealing increased plastoglobule size, number, and adjacent lipid droplets over time. Proteomic and lipidomic analyses uncovered up‑regulation of specific plastoglobule proteins and alterations in triacylglycerol, plastoquinone derivatives, and phytol esters, suggesting roles in membrane remodeling and oxidative defense. These insights highlight plastoglobule‑associated pathways as potential targets for enhancing heat resilience in maize.
The study applied the STOmics spatial transcriptomics platform to map gene expression at subcellular resolution in developing wheat (Triticum aestivum) seeds during grain filling, analyzing over four million transcripts. Eight functional cellular groups were identified, including four distinct endosperm clusters with radial expression patterns and novel marker genes, and subgenome‑biased expression was observed among specific paralogs. These results highlight spatial transcriptomics as a powerful tool for uncovering tissue‑specific and polyploid‑specific gene regulation in seeds.
Spatial and single-cell transcriptomics capture two distinct cell states in plant immunity
Authors: Hu, Y., Schaefer, R., Rendleman, M., Slattery, A., Cramer, A., Nahiyan, A., Breitweiser, L., Shah, M., Kaehler, E., Yao, C., Bowling, A., Crow, J., May, G., Tabor, G., Thatcher, S., Uppalapati, S. R., Muppirala, U., Deschamps, S.
The study combined spatial transcriptomics and single-nuclei RNA sequencing to map soybean (Glycine max) responses to Asian soybean rust caused by Phakopsora pachyrhizi, revealing two distinct host cell states: pathogen‑occupied regions and adjacent non‑infected regions that show heightened defense gene expression. Gene co‑expression network analysis identified a key immune‑related module active in the stressed cells, highlighting a cell‑non‑autonomous defense mechanism.
The study used transcriptomic and lipidomic profiling to investigate how chia (Salvia hispanica) leaves respond to short‑term (3 h) and prolonged (27 h) heat stress at 38 °C, revealing rapid activation of calcium‑signaling and heat‑shock pathways and reversible changes in triacylglycerol levels. Nearly all heat‑responsive genes returned to baseline expression after 24 h recovery, highlighting robust thermotolerance mechanisms that could inform improvement of other oilseed crops.
Arabidopsis lines with modified ascorbate concentrations reveal a link between ascorbate and auxin biosynthesis
Authors: Fenech, M., Zulian, V., Moya-Cuevas, J., Arnaud, D., Morilla, I., Smirnoff, N., Botella, M. A., Stepanova, A. N., Alonso, J. M., Martin-Pizarro, C., Amorim-Silva, V.
The study used Arabidopsis thaliana mutants with low (vtc2, vtc4) and high (vtc2/OE-VTC2) ascorbate levels to examine how ascorbate concentration affects gene expression and cellular homeostasis. Transcriptomic analysis revealed that altered ascorbate levels modulate defense and stress pathways, and that TAA1/TAR2‑mediated auxin biosynthesis is required for coping with elevated ascorbate in a light‑dependent manner.
Imputation integrates single-cell and spatial gene expression data to resolve transcriptional networks in barley shoot meristem development
Authors: Demesa-Arevalo, E., Dorpholz, H., Vardanega, I., Maika, J. E., Pineda-Valentino, I., Eggels, S., Lautwein, T., Kohrer, K., Schnurbusch, T., von Korff, M., Usadel, B., Simon, R.
The study uses an imputation strategy that integrates deep single-cell RNA sequencing with spatial gene expression data to map transcriptional dynamics across barley inflorescence development at cellular resolution. By leveraging the BARVISTA web interface, the authors identify key transcriptional events in meristem founder cells, characterize complex branching mutants, and reconstruct spatio‑temporal trajectories of flower organogenesis, offering insights for targeted trait manipulation.
The study identifies the serine/threonine protein kinase CIPK14/SNRK3.15 as a regulator of sulfate‑deficiency responses in Arabidopsis thaliana seedlings, with mutants showing diminished early adaptive and later salvage responses under sulfur starvation. While snrk3.15 mutants exhibit no obvious phenotype under sufficient sulfur, the work provides a novel proteomic dataset comparing wild‑type and mutant seedlings under sulfur limitation.
Comparative multi-omics profiling of Gossypium hirsutum and Gossypium barbadense fibers at high temporal resolution reveals key differences in polysaccharide composition and associated glycosyltransferases
Authors: Swaminathan, S., Lee, Y., Grover, C. E., DeTemple, M. F., Mugisha, A. S., Sichterman, L. E., Yang, P., Xie, J., Wendel, J. F., Szymanski, D. B., Zabotina, O. A.
The study performed daily large-scale glycome, transcriptome, and proteome profiling of developing fibers from the two cultivated cotton species, Gossypium barbadense and G. hirsutum, across primary and secondary cell wall stages. It identified delayed cellulose accumulation and distinct compositions of xyloglucans, homogalacturonans, rhamnogalacturonan‑I, and heteroxylans in G. barbadense, along with higher expression of specific glycosyltransferases and expansins, suggesting these molecular differences underlie the superior fiber length and strength of G. barbadense.