Spatiotemporal regulation of arbuscular mycorrhizal symbiosis at cellular resolution
Authors: Chancellor, T., Ferreras-Garrucho, G., Akmakjian, G. Z., Montero, H., Bowden, S. L., Hope, M., Wallington, E., Bhattacharya, S., Korfhage, C., Bailey-Serres, J., Paszkowski, U.
The study applied dual-species spatial transcriptomics at single-cell resolution to map plant and fungal gene activity in rice roots colonized by Rhizophagus irregularis, revealing transcriptional heterogeneity among morphologically similar arbuscules. By pioneering an AM-inducible TRAP-seq using stage‑specific promoters, the authors uncovered stage‑specific reprogramming of nutrient transporters and defence genes, indicating dynamic regulation of nutrient exchange and arbuscule lifecycle.
The study investigates the wheat Pm3 NLR allelic series, revealing that near-identical Pm3d and Pm3e alleles confer broad-spectrum resistance by recognizing multiple, structurally diverse powdery mildew effectors. Using chimeric NLR constructs, the authors pinpoint specificity-determining polymorphisms and demonstrate that engineered combinations of Pm3d and Pm3e further expand effector recognition, showcasing the potential for durable wheat protection through NLR engineering.
The study investigates how maternal environmental conditions, specifically temperature and light intensity, influence seed longevity in eight Arabidopsis thaliana natural accessions. Seeds developed under higher temperature (27 °C) and high light showed increased longevity, with transcriptome analysis of the Bor-4 accession revealing dynamic changes in stored mRNAs, including upregulation of antioxidant defenses and raffinose family oligosaccharides. These findings highlight the genotype‑dependent modulation of seed traits by the maternal environment.
Regenerative agriculture effects on biomass, drought resilience and 14C-photosynthate allocation in wheat drilled into ley compared to disc or ploughed arable soil
Authors: Austen, N., Short, E., Tille, S., Johnson, I., Summers, R., Cameron, D. D., Leake, J. R.
Regenerative agriculture using a grass-clover ley increased wheat yields and macroaggregate stability despite reduced root biomass, but did not enhance soil carbon sequestration as measured by 14C retention. Drought further decreased photosynthate allocation to roots, especially in ley soils, while genotype effects on yield were minimal.
The study applied spatial transcriptomics to map the transcriptional landscape of wheat (Triticum aestivum) inflorescences during spikelet development, revealing two distinct regions—a RAMOSA2‑active primordium and an ALOG1‑expressing boundary. Developmental assays showed that spikelets arise from meristematic zones accompanied by vascular rachis formation, identifying key regulators that could be targeted to improve spikelet number and yield.
The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
The study investigates the evolutionary shift from archegonial to embryo‑sac reproduction by analyzing transcriptomes of Ginkgo reproductive organs and related species. It reveals that the angiosperm pollen‑tube guidance module MYB98‑CRP‑ECS is active in mature Ginkgo archegonia and that, while egg cell transcription is conserved, changes in the fate of other female gametophyte cells drove the transition, providing a molecular framework for this major reproductive evolution.
The study compared aphid resistance and Barley Yellow Dwarf Virus (BYDV) transmission among three wheat varieties (G1, RGT Wolverine, RGT Illustrious). G1 emits the repellent 2‑tridecanone, restricts aphid phloem access, and shows reduced BYDV transmission, whereas RGT Wolverine limits systemic viral infection despite high transmission efficiency. The authors suggest breeding the two resistance mechanisms together for improved protection.
An optimized workflow was developed to apply the Xenium in situ sequencing platform to formalin‑fixed paraffin‑embedded (FFPE) sections of Medicago truncatula roots and nodules, incorporating customized tissue preparation, probe design, and imaging to overcome plant‑specific challenges such as cell wall autofluorescence. The protocol was validated across nodule developmental stages using both a 50‑gene panel for mature cell identity and an expanded 480‑gene panel covering multiple cell types, providing a scalable high‑resolution spatial transcriptomics method adaptable to other plant systems.
The study investigated whether wheat homoeologous genes actively compensate for each other when one copy acquires a premature termination codon (PTC) mutation. By analyzing mutagenised wheat lines, the authors found that only about 3% of cases exhibited upregulation of the unaffected homoeolog, indicating that widespread active transcriptional compensation is absent in wheat.