Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study examined how soil phosphorus and nitrogen availability influence wheat root-associated arbuscular mycorrhizal fungal (AMF) communities and the expression of mycorrhizal nutrient transporters. Field sampling across two years combined with controlled pot experiments showed that P and N jointly affect AMF colonisation, community composition (with Funneliformis dominance under high P), and regulation of phosphate, ammonium, and nitrate transporters. Integrating metabarcoding and RT‑qPCR provides a framework to assess AMF contributions to crop nutrition.
Tomato leaf transcriptomic changes promoted by long-term water scarcity stress can be largely prevented by a fungal-based biostimulant
Authors: Lopez-Serrano, L., Ferez-Gomez, A., Romero-Aranda, R., Jaime Fernandez, E., Leal Lopez, J., Fernandez Baroja, E., Almagro, G., Dolezal, K., Novak, O., Diaz, L., Bautista, R., Leon Morcillo, R. J., Pozueta Romero, J.
Foliar application of Trichoderma harzianum cell‑free culture filtrates (CF) increased fruit yield, root growth, and photosynthesis in a commercial tomato cultivar under prolonged water deficit in a Mediterranean greenhouse. Integrated physiological, metabolite, and transcriptomic analyses revealed that CF mitigated drought‑induced changes, suppressing about half of water‑stress responsive genes, thereby reducing the plant’s transcriptional sensitivity to water scarcity.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.
The study investigated unexpected leaf spot symptoms in Psa3‑resistant kiwifruit (Actinidia) germplasm, finding that Psa3 was detectable by qPCR and metabarcoding despite poor culturing. Metabarcoding revealed distinct bacterial community shifts in lesions versus healthy tissue, and whole‑genome sequencing identified diverse Pseudomonas spp. that, while not individually more pathogenic, could enhance Psa3 growth, suggesting pathogenic consortia on resistant hosts.
Transcriptome responses of two Halophila stipulacea seagrass populations from pristine and impacted habitats, to single and combined thermal and excess nutrient stressors, reveal local adaptive features and core stress-response genes
Authors: Nguyen, H. M., Yaakov, B., Beca-Carretero, P., Procaccini, G., Wang, G., Dassanayake, M., Winters, G., Barak, S.
The study examined transcriptomic responses of the tropical seagrass Halophila stipulacea from a pristine and an impacted site under single and combined thermal and excess nutrient stress in mesocosms. Combined stress caused greater gene reprogramming than individual stresses, with thermal effects dominating and the impacted population showing reduced plasticity but higher resilience. Core stress‑response genes were identified as potential early field indicators of environmental stress.