Phosphite (Phi) and phosphate (Pi) share the same root uptake system, but Phi acts as a biostimulant that modulates plant growth and disease resistance in a species‑ and Pi‑dependent manner. In Arabidopsis, Phi induces hypersensitive‑like cell death and enhances resistance to Plectosphaerella cucumerina, while in rice it counteracts Pi‑induced susceptibility to Magnaporthe oryzae and Fusarium fujikuroi, accompanied by extensive transcriptional reprogramming.
The study examines how ectopic accumulation of methionine in Arabidopsis thaliana leaves, driven by a deregulated AtCGS transgene under a seed‑specific promoter, reshapes metabolism, gene expression, and DNA methylation. High‑methionine lines exhibit increased amino acids and sugars, activation of stress‑hormone pathways, and reduced expression of DNA methyltransferases, while low‑methionine lines show heightened non‑CG methylation without major transcriptional changes. Integrated transcriptomic and methylomic analyses reveal a feedback loop linking sulfur‑carbon metabolism, stress adaptation, and epigenetic regulation.
Spinach (Spinacia oleracea L.) Flavonoids Are Hydrolyzed During Digestion and Their Bioaccessibility Is Under Stronger Genetic Control than Raw Material Content
Authors: Dzakovich, M., Tak, A. L., Le, E. A., Dang, R. P., Redan, B. W., Dubrow, G. A.
The study evaluated flavonoid diversity, bioaccessibility, and heritability in a panel of 30 F1 and open‑pollinated spinach accessions grown under controlled conditions. Quantitative analysis of 39 flavonoids showed strong environmental influence, possible divergent biosynthetic branches, and higher heritability for bioaccessibility than for raw content, while in vitro digestion revealed substantial conversion of flavonoid aglycones. These findings highlight the complexity of spinach flavonoid metabolism and its relevance for breeding and nutritional outcomes.
Dissecting the genetic architecture of flowering and maturity time in almond (Prunus dulcis): heritability estimates and breeding value predictions from historical data
Authors: GOMEZ ABAJO, M. D. M., Dicenta, F., Martinez-Garcia, P. J.
The study estimated genetic parameters for flowering and maturity time in almond (Prunus dulcis) using classical segregation analyses and Bayesian linear mixed models on a pedigree of over 17,500 individuals spanning 30 years. Heritability and repeatability were quantified, breeding values (EBVs) were computed for all genotypes, and trait-specific rankings were generated to improve parental selection. The results provide a foundation for integrating genomic selection into almond breeding programs.
The study validates and quantifies biological nitrogen fixation in Mexican maize varieties and assesses a double‑haploid population derived from an elite inbred (PHZ51) crossed with these landraces. Aerial root traits show moderate to high heritability, and QTL mapping reveals multiple loci influencing root number, node occurrence, and diameter, with most favorable alleles originating from the landraces. The authors suggest that pyramiding the identified QTL into elite germplasm could enhance maize’s BNF capacity, pending field validation.
The study shows that the SnRK1 catalytic subunit KIN10 directs tissue-specific growth‑defense programs in Arabidopsis thaliana by reshaping transcriptomes. kin10 knockout mutants exhibit altered root transcription, reduced root growth, and weakened defense against Pseudomonas syringae, whereas KIN10 overexpression activates shoot defense pathways, increasing ROS and salicylic acid signaling at the cost of growth.
The study examines how the SnRK1 catalytic subunit KIN10 integrates carbon availability with root growth regulation in Arabidopsis thaliana. Loss of KIN10 reduces glucose‑induced inhibition of root elongation and triggers widespread transcriptional reprogramming of metabolic and hormonal pathways, notably affecting auxin and jasmonate signaling under sucrose supplementation. These findings highlight KIN10 as a central hub linking energy status to developmental and environmental cues in roots.