The authors created a fast‑cycling, isogenic barley line (GP‑rapid) by introgressing the wild‑type Ppd‑H1 allele from Igri into the Golden Promise cultivar and performing two backcrosses to limit the donor genome, achieving a 25% reduction in generation time under speed‑breeding conditions while retaining high transformation efficiency. CRISPR/Cas9‑mediated editing of Ppd‑H1 showed regeneration and transformation rates comparable to the original Golden Promise, establishing GP‑rapid as a rapid platform for transgenic and gene‑edited barley research.
Golden Promise Ppd-H1 speed breeding CRISPR/Cas9 transformation efficiency
Spatial Coordination between Leaf Gradient and Temperature Response in Barley
Authors: Fernandez, E. C., Tu, G., Dai, W., Yang, S., Liu, Z., Grzybowski, M., Liang, Z.
The study used chlorophyll fluorescence imaging to map non-photochemical quenching (NPQ) gradients along barley leaf axes and found heat stress attenuates NPQ induction, revealing spatial heterogeneity in stress responses. Genome‑wide association and transcriptomic analyses identified candidate genes, notably HORVU.MOREX.r3.3HG0262630, that mediate region‑specific heat responses, highlighting pathways for improving cereal heat resilience.
The study applied Spatial Analysis of Field Trials with Splines (SpATS) and Neighbor Genome-Wide Association Study (Neighbor GWAS) to barley field data, revealing that neighboring genotypes contribute to spatial variation in disease damage. Neighbor GWAS identified variants on chromosome 7H that modestly affect net form net blotch and scald resistance, suggesting that genotype mixtures could mitigate pest damage.
Using a barley pangenome of 76 genotypes and a pan‑transcriptome subset of 20, the study characterizes the diversity and evolutionary dynamics of CCT motif genes, uncovering novel frameshift variants and clade‑specific domain expansions. Phylogenetic and tissue‑specific expression analyses reveal functional divergence among paralogs, and the unexpected retention of the VRN2 repressor in spring barley suggests additional regulatory mechanisms beyond vernalization.