Sorghum embryos undergoing B chromosome elimination express B-variants of mitotic-related genes
Authors: Bojdova, T., Hlouskova, L., Holusova, K., Svacina, R., Hribova, E., Ilikova, I., Thiel, J., Kim, G., Pleskot, R., Houben, A., Bartos, J., Karafiatova, M.
The study characterizes tissue-specific elimination of B chromosomes in Sorghum purpureosericeum during embryo development, identifying 28 candidate genes linked to this process. Integrated in situ visualization, genome sequencing, and transcriptomic analyses reveal that the B chromosome originates from multiple A chromosomes, harbors unique repeats, and expresses divergent kinetochore components that likely mediate its selective removal.
The study evaluated whether integrating genomic, transcriptomic, and drone-derived phenomic data improves prediction of 129 maize traits across nine environments, using both linear (rrBLUP) and nonlinear (SVR) models. Multi-omics models consistently outperformed single-omics models, with transcriptomic data especially enhancing cross‑environment predictions and capturing genotype‑by‑environment interactions. The results highlight the added value of combining transcriptomics and phenomics with genotypes for more accurate and generalizable trait prediction in maize.
Phytoplasma infection in sesame (Sesamum indicum) triggers tissue-specific alterations in gene expression and metabolite composition, with floral organs adopting leaf-like traits and distinct changes in porphyrin, brassinosteroid, and phenylpropanoid pathways. Integrated transcriptomic and metabolomic analyses, supported by biochemical, histological, and qRT-PCR assays, reveal differential stress and secondary metabolite responses between infected leaves and flowers.
The study used CRISPR/Cas9 to edit the downstream region of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, identifying a 2.3‑kb segment containing the Block E enhancer as crucial for normal FT expression and flowering. Fine‑scale deletions pinpointed a 63‑bp core module with CCAAT‑ and G‑boxes, and revealed a cryptic CCAAT‑box that becomes active when repositioned, highlighting the importance of local chromatin context and motif arrangement for enhancer function.
The study investigates late‑stage effector genes of the fungus Leptosphaeria maculans that infect Brassica napus stems, assessing whether these effectors are more conserved than early‑stage ones and thus may confer more durable resistance. Six candidate late effectors were selected and screened across an expanded set of semi‑winter B. napus genotypes, revealing new resistance sources predominantly within this genetic pool, supporting the hypothesis of greater stability of late effectors.
The study optimized three wheat transformation methods—immature embryo, callus, and in planta injection—by systematically adjusting Agrobacterium strain, bacterial density, acetosyringone concentration, and incubation conditions, achieving transformation efficiencies up to 66.84%. Using these protocols, CRISPR/Cas9 knockout of the negative regulator TaARE1-D produced mutants with increased grain number, spike length, grain size, and a stay‑green phenotype, demonstrating the platform’s potential to accelerate yield and stress‑tolerance improvements in wheat.
Light on its feet: Acclimation to high and low diurnal light is flexible in Chlamydomonas reinhardtii
Authors: Dupuis, S., Chastain, J. L., Han, G., Zhong, V., Gallaher, S. D., Nicora, C. D., Purvine, S. O., Lipton, M. S., Niyogi, K. K., Iwai, M., Merchant, S. S.
The study examined how prior light‑acclimation influences the fitness and rapid photoprotective reprogramming of Chlamydomonas during transitions between low and high diurnal light intensities. While high‑light‑acclimated cells struggled to grow and complete the cell cycle after shifting to low light, low‑light‑acclimated cells quickly remodeled thylakoid ultrastructure, enhanced photoprotective quenching, and altered photosystem protein levels, recovering chloroplast function within a single day. Transcriptomic and proteomic profiling revealed swift induction of stress‑response genes, indicating high flexibility in diurnal light acclimation.
The study presents an optimized Agrobacterium-mediated transformation protocol for bread wheat that incorporates a GRF4‑GIF1 fusion to enhance regeneration and achieve genotype‑independent transformation across multiple cultivars. The approach consistently improves transformation efficiency while limiting pleiotropic effects, offering a versatile platform for functional genomics and gene editing in wheat.
DECREASE IN DNA METHYLATION 1-mediated epigenetic regulation maintains gene expression balance required for heterosis in Arabidopsis thaliana
Authors: Matsuo, K., Wu, R., Yonechi, H., Murakami, T., Takahashi, S., Kamio, A., Akter, M. A., Kamiya, Y., Nishimura, K., Matsuura, T., Tonosaki, K., Shimizu, M., Ikeda, Y., Kobayashi, H., Seki, M., Dennis, E. S., Fujimoto, R.
The study demonstrates that the chromatin remodeler DDM1 is essential for biomass heterosis in Arabidopsis thaliana hybrids, as loss of DDM1 function leads to reduced rosette growth and extensive genotype‑specific transcriptomic and DNA methylation changes. Whole‑genome bisulfite sequencing revealed widespread hypomethylation in ddm1 mutants, while salicylic acid levels were found unrelated to heterosis, indicating that epigenetic divergence, rather than SA signaling, underpins hybrid vigor.
The authors introduced a polycistronic tRNA‑gRNA array for CRISPR/Cas9 editing in Physcomitrium patens that doubled the frequency of large, targeted deletions compared with conventional single‑gRNA constructs. Using dual‑gRNA targeting, they achieved simultaneous deletion of two to four genes (katanin and TPX2 families) in a single transformation, reaching up to 42% efficiency per gene, though efficiency depended on gRNA pair design.