Identification of a novel link connecting indole-3-acetamide with abscisic acid biosynthesis and signaling
Authors: Moya-Cuevas, J., Ortiz-Garcia, P., Gonzalez Ortega-Villizan, A., Viguera-Leza, I., Perez-Gonzalez, A., Paz-Ares, J., Alonso-Blanco, C., Vicente-Carbajosa, J., Pollmann, S.
A genome-wide association study of 166 Iberian Arabidopsis accessions identified loci, including ABA3 and GA2ox2, that modulate the inhibitory effect of the auxin precursor indole-3-acetamide (IAM) on primary root elongation. Integrating sequence analysis, transcriptomics, 3D protein modeling, and mutant physiology revealed that IAM promotes ABA biosynthesis and signaling, uncovering a novel node of hormone crosstalk.
Stress-dependent responses of grapevine wood and fungal pathogen activity under esca and drought
Authors: Chambard, M., Cantu, D., Bortolami, G., Dell'Acqua, N., Ferrer, N., Gambetta, G., Garcia, J., Gastou, P., Massonnet, M., Moretti, S., Rochepeau, A., Petriacq, P., Foulongne-Oriol, M., Delmas, C. E. L.
The study used wood metatranscriptomics, metabolomics, and metabarcoding to compare grapevine (Vitis vinifera) responses to drought and esca leaf symptom expression, revealing distinct but overlapping transcriptomic and metabolic signatures, including activation of phenylpropanoid and stilbenoid pathways. Drought reduced esca symptom expression, associated with decreased abundance of the wood‑decay fungus Fomitiporia mediterranea and altered fungal virulence factor expression, while increasing the relative abundance and anti‑oxidative gene expression of Phaeomoniella chlamydospora.
Whole genome sequencing-based multi-locus association mapping for kernel iron, zinc and protein content in groundnut
Authors: Sagar, U. N., Parmar, S., Gangurde, S. S., Sharma, V., Pandey, A. K., Mohinuddin, D. K., Dube, N., Bhat, R. S., John, K., Sreevalli, M. D., Rani, P. S., Singh, K., Varshney, R. K., Pandey, M. K.
The study used multi‑season phenotyping for iron, zinc, and protein content together with whole‑genome re‑sequencing of a groundnut mini‑core collection to conduct a genome‑wide association study, identifying numerous marker‑trait associations and candidate genes linked to nutrient homeostasis. SNP‑based KASP markers were designed for nine loci, of which three showed polymorphism and are ready for deployment in genomics‑assisted breeding for nutrient‑rich groundnut varieties.
The study investigated whether clonal offspring of Festuca rubra inheriting drought or methyl jasmonate (MeJA) exposure exhibit transgenerational stress memories that enhance tolerance to subsequent drought. Using a factorial experiment, untargeted LC‑MS metabolomics combined with morpho‑physiological assessments revealed that combined drought and MeJA memories generate novel metabolic and physiological responses, improving water conservation and photosynthetic performance. These findings highlight a layered, interactive memory system that can be leveraged to prime drought resilience across generations.
The study applied a progressive, sublethal drought treatment to Arabidopsis thaliana, collecting time‑resolved phenotypic and transcriptomic data. Machine‑learning analysis revealed distinct drought stages driven by multiple overlapping transcriptional programs that intersect with plant aging, and identified high‑explanatory‑power transcripts as biomarkers rather than causal agents.
Salt stress strongly suppresses root growth in Festuca rubra while sparing shoot development. Transcriptome profiling identified over 68,000 differentially expressed genes, with up‑regulated genes enriched in methionine, melatonin, and suberin biosynthesis and down‑regulated genes involved in gibberellin, ABA, and sugar signaling, indicating extensive hormonal and metabolic reprogramming. Paradoxical regulation of gibberellin and ethylene pathways suggests a finely tuned balance between growth and stress responses.
The study integrates genome, transcriptome, and chromatin accessibility data from 380 soybean accessions to dissect the genetic and regulatory basis of symbiotic nitrogen fixation (SNF). Using GWAS, TWAS, eQTL mapping, and ATAC-seq, the authors identify key loci, co‑expression modules, and regulatory elements, and validate the circadian clock gene GmLHY1b as a negative regulator of nodulation via CRISPR and CUT&Tag. These resources illuminate SNF networks and provide a foundation for soybean improvement.
The study examined how single and repeated mechanical disturbances (whole‑pot drops) affect leaf folding in Mimosa pudica, using chlorophyll fluorescence to track photosystem II efficiency and transcriptome profiling to identify responsive genes. A single drop mainly up‑regulated flavonoid biosynthesis genes, whereas multiple drops triggered broader biotic and abiotic stress pathways, indicating a shift in the plant’s gene regulatory network under repeated stress.
The study conducted tissue-specific metabolomic profiling of leaf, calyx, and fruit surfaces across 29 Physalis species, revealing extensive acylsugar diversity with up to 323 unique structures, many accumulated on fruit surfaces. Hierarchical clustering and phylogenetic analyses showed that acylsugar profiles do not align with taxonomic relationships, and functional assays of ASAT1 enzymes from three species demonstrated broad substrate specificity that likely drives structural variation. These findings highlight fruit-localized acylsugars as potential targets for engineering crop resilience.
Enhancement of Arabidopsis growth by Enterobacter sp. SA187 under elevated CO2 is dependent on ethylene signalling activation and primary metabolism reprogramming
Authors: Ilyas, A., Mauve, C., Pateyron, S., Paysant-Le Roux, C., Bigeard, J., Hodges, M., de Zelicourt, A.
The study shows that inoculating Arabidopsis thaliana with the plant‑growth‑promoting bacterium Enterobacter sp. SA187 markedly boosts root and shoot biomass under elevated CO₂, accompanied by altered nitrogen and carbon content and reshaped phytohormone signaling. Transcriptomic and metabolomic analyses reveal activation of salicylic acid, jasmonic acid, and ethylene pathways and enhanced primary metabolism, while the ethylene‑insensitive ein2‑1 mutant demonstrates that the growth benefits are ethylene‑dependent.